Table of Contents from Novak-Miller: *Frequency-Domain Characterization of Power Distribution Networks*, published by Artech House, July 2007. ISBN-13: 978-1-59693-200-5

Frequency-Domain Characterization of Power Distribution Networks

Chapter 1: Introduction	1	
1.1 Evolution of power distribution networks		
1.2 The importance of frequency domain	2	
1.3 The impedance matrix	4	
1.3.1 Size of matrix	6	
1.4 When time-domain characterization is useful	8	
1.5 If and when time-domain response is needed	8	
1.6 The characterization process	9	
1.7 The modeling process	10	
References	11	
Chapter 2: Simulation methods and tools	13	
2.1 Spreadsheet calculations	13	
2.2 Spice AC	15	
2.3 Matlab	16	
2.4 Field solvers	17	
2.4.1 Classifications	18	
2.4.1.1 Geometrical classification	18	
2.4.1.2 Quasi-static versus full-wave	19	
2.4.1.3 Numerical formulations	21	
2.4.2 Convergence	22	
2.4.2.1 Solution time	22	
2.4.2.2 System limitations on convergence	22	
2.4.2.3 Verifying convergence	23	
2.4.2.4 Mesh seeding to speed convergence	24	
2.4.3 Sources of simulation inaccuracies	25	
2.4.3.1 Geometrical approximations	25	
2.4.3.2 Solving inside	27	
2.4.3.3 Material properties	29	
2.4.3.4 Geometrical inaccuracies	31	
2.4.3.5 Port definitions, impedance considerations, and port sizing	32	
2.4.3.6 Interpolation sweeps	36	
2.4.3.7 Simulating open boundaries	37	
2.4.3.8 Basis functions	38	
2.4.3.9 Probe and port location	40	
References	41	
Chapter 3: Characterization and modeling of vias	43	
3.1 Introduction	43	
3.2 Via partial inductance	43	
3.3 Via loop inductance	47	
3.3.1 Measurement correlation	54	
3.4 Via arrays	56	
3.4.1 Measuring via arrays	57	
3.4.2 Modeling via arrays	60	
3.4.3 Parameterizing via arrays	61	
3.4.3.1 Antipad diameter	61	
3.4.3.2 Dielectric thickness	62	
3.4.4 Via array summary points	65	

References

65

Chapter 4: Characterization and modeling of planes and laminates	67
4.1 Introduction	67
4.2 Analytical plane models	68 68
4.2.1 Analytical models for rectangular plane shapes	
4.2.1.1 Lossless cavity model	68
4.2.1.2 Light-losses cavity model	72
4.2.1.3 Modified cavity model using the complex propagation constant	73
4.2.1.4. Equivalent circuit based cavity model	73
4.2.1.5 Transmission plane model	74
4.2.1.6 Cavity model simulations	75
4.2.2. Analytical plane models for arbitrary plane shapes	81
4.3 Transmission-line models	84
4.3.1 Transmission-line grid models for rectangular plane shapes	84
4.3.2 Transmission-line grid models for arbitrary plane shapes	86
4.3.3 Transmission matrix model for arbitrary plane shapes	90
4.4 Effect of plane parameters on self and transfer impedances	92
4.4.1 Impact of dielectric thickness with regular conductors	92
4.4.2 Impact of plane thickness	94
4.4.3 Parallel plane pairs	96
4.4.4 Impact of dielectric constant and dielectric losses	96
4.4.5 Run time versus number of cells	97
4.5 Characterization of plane and laminate parameters	98
4.5.1 DC resistance of planes	98
4.5.2 Measuring DC resistance of planes	100
4.5.3 Effect of perforations on DC plane resistance	101
4.5.4 Simulating DC voltage drop and effective plane resistance	102
4.5.5 Characterization of mid and high-frequency plane parameters	102
4.5.5.1 Determining the modal resonance frequency of lossy dielectrics	104
4.5.5.2 Dielectric constant and dielectric loss	106
4.5.5.3 AC plane resistance and inductance	109
4.5.5.4 Resonator quality factor	110
4.5.5.5 Measurement-model correlations	111
References	120
	120
Chapter 5: Impedance measurements basics	123
5.1 Selecting the measurement concept for PDN impedance	123
5.2 The importance of two-port connections	126
5.3 Self and transfer impedance	129
5.4 Transforming measured S parameters	132

J.J B		129
5.4 T	ransforming measured S parameters	132
	5.4.1 Measuring self-impedance with magnitude $ Z_x \ll 25 \Omega$	133
	5.4.2 Measuring arbitrary self- impedance values	134
	5.4.3 Measuring large impedance values	136
	5.4.4 Measuring arbitrary transfer-impedance values	137
	5.4.5 Measuring transfer ratios	141
5.5 E	xtracting component parameters from measured data	143
	5.5.1 Extracting capacitance	143
	5.5.1.1 Compensating for series inductance	144
	5.5.2 Extracting Equivalent Series Resistance (ESR)	145
	5.5.3 Extracting inductance	146
	5.5.3.1 Compensating for series capacitance	147
	5.5.3.2 Compensating for parallel capacitance	148
	5.5.3.3 Approximate compensation for series and parallel capacitances	148
	5.5.3.4 A more accurate compensation for parallel capacitance	150
	5.5.4 Estimating inductance and capacitance for compensations	152
	5.5.5 Fixture compensation, port extension and de-embedding	154
References		158

Table of Contents from Novak-Miller: *Frequency-Domain Characterization of Power Distribution Networks*, published by Artech House, July 2007. ISBN-13: 978-1-59693-200-5

Chapter 6: Connections and calibrations	159
6.1 Port connections	159
6.1.1 Fixtures	159
6.1.1.1 When no fixture is needed	160
6.1.1.2 Fixtures for large-size or high-current DUTs	162
6.1.1.3 Fixtures and test boards without probe connections	162
6.1.1.4 Test boards and custom fixtures with connectors	163
6.1.2 Test vias	165
6.1.2.1 Test via geometry	165
6.1.2.2 Spreading inductance of antipads in test vias	168
6.1.2.3 Thermal relief in test vias	168
6.1.3 Using component pads or component bodies as test points	169
6.1.4 Location of test points	174
6.2 Probes, connectors and cables	175
6.2.1 Soldered connections	175
6.2.2 Home-made probes	176
6.2.3 Wafer probes	180
6.2.4 Probe and DUT holders, probe stations	180
6.2.5 Cables	181
6.3 Calibrations	183
6.3.1 VNA calibrations in the low-frequency range	183
6.3.2 VNA calibrations in the mid-frequency range	185
6.3.3 VNA calibrations in the high-frequency range	186
6.4 Stability and accuracy of measurements	188
6.4.1 Response drift with time	188
6.4.2 Instrumentation settings	189
6.4.3 Probe placement	191
6.4.4 Quality of probe and DUT connections	192
References	195

Chapter 7: Measurements – Practical details	197
7.1 Making the proper connections	197
7.1.1 Eliminating cable-braid-loop error at low frequencies	197
7.1.1.1 Ferrite clamps/sleeves	198
7.1.1.2 Isolation transformer	200
7.1.1.3 Isolation amplifier	200
7.1.1.4 Other possibilities to eliminate cable-braid loop errors	204
7.1.2 Examples of correct connections	205
7.1.2.1 Example: measuring low-ESR bulk capacitors	205
7.1.2.2 Example: measuring the output impedance of DC-DC converters	206
7.1.2.3 Measuring the input impedance of DC-DC converters	211
7.1.2.4 Measuring transfer functions of DC-DC converters	213
7.1.2.5 Measuring loop stability of DC-DC converters	217
7.1.2.6 An exception: time-domain check of DC-DC converters	218
7.1.3 Measuring low impedances at high frequencies	218
7.2 Making the proper measurements	220
7.2.1 Multiple measurements, multiple instruments	220
7.2.2 Averaging, smoothing, bandwidth	221
7.2.3 Background noise, noise floor	224
7.2.4 Repeatability of data	224
7.3 System measurements	225
7.3.1 Measurements of powered boards	227
References	228

Table of Contents from Novak-Miller: *Frequency-Domain Characterization of Power Distribution Networks*, published by Artech House, July 2007. ISBN-13: 978-1-59693-200-5

Chapter 8: Characterization and modeling of bypass capacitors	229
8.1 Simple C-R-L models, spreadsheet correlations	229
8.2 Wide-band characterization	232
8.3 Impact of geometry on electrical parameters	234
8.3.1 How to define ESL	234
8.3.2 Impact of body geometry on ESL of MLCC	239
8.3.3 ESR and ESL of very tall capacitors	242
8.3.4 Impact of vertical MLCC mounting on ESL and ESR	246
8.3.5 Impact of special geometries on ESL and ESR	248
8.3.6 Uniqueness of parameters	252
8.4 Effect of other variables on capacitor parameters	257
8.4.1 Effect of DC and AC bias voltage, piezo effect	257
8.4.1.1 Effect of DC bias voltage	257
8.4.1.2 Effect of AC bias voltage	259
8.4.1.3 Piezoelectric effect	259
8.4.2 Effect of environmental variables	260
8.4.2.1 Effect of temperature	260
8.4.2.2 Aging	261
8.5 Multi-component C-R-L models	262
8.5.1 Multi-component models for bulk capacitors	263
8.5.2 Multi-component models for ceramic capacitors	264
8.6 Black-box model	267
8.6.1 The building blocks	268
8.6.2 Modeling of capacitance versus frequency	270
8.6.3 Modeling of inductance versus frequency	272
8.6.4 Modeling of resistance (ESR) versus frequency	273
8.7 Bedspring capacitor model	274
8.8 Causal slow-wave model	283
8.8.1 The unit-cell model	284
8.8.2 The lossy transmission-line model	288
8.8.3 Correlations	290
References	294

Chapter 9: Characterization and modeling of inductors, DC-DC converters and systems	297
9.1 Characterization and modeling of inductors	298
9.1.1 Lossy ferrite inductors	299
9.1.2 Low-loss ferrite inductors	302
9.1.3 Linear inductor models	302
9.1.4 Frequency-dependent inductor models	306
9.2 Characterization and modeling of power converters	307
9.2.1 Small-signal output impedance of DC-DC converters	308
9.2.2 Black-box modeling of output impedance	312
9.3 Modeling and characterizing systems	314
9.3.1 Return path and rail coupling in flip-chip BGA package	315
9.3.2 Core and DIMM memory rails with various populations	318
9.3.3 Detailed characterization on high-speed supply rail	321
References	326
T 1	220

Index

329