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Characterization and Modeling of Planes
and Laminates

4.1 Introduction

Planes with dielectric layer separation, also called the power-bus, serve several pur-
poses in PDNs: they carry dc current from source to load, they connect bypass
capacitors horizontally to active devices, and many times they also provide a return
path for signals. The nature and depth of modeling and characterization depends on
our interests and (ultimate) goals. If we are worried about the dc voltage drop on a
high-current but otherwise well-filtered supply rail, our main focus may be limited
to the equivalent dc resistance and voltage-drop profile. For lower current multi-GB
IO rails the dc voltage drop may matter less, but we may need to characterize and
model the high-frequency return-path function of the plane over a wide frequency
band. If our task is to characterize the material properties of the conductive planes
and dielectric laminates, we may not care much for the practical limitations of con-
necting geometry in the real usage, but we might want to model and capture the
pure material properties as accurately as possible. Finally, if our focus is electro-
magnetic compatibility, we probably need to characterize primarily the
high-frequency resonance peaks.

There are several commercial tools available to simulate PDN planes (see Chap-
ter 2). Tools which use the finite difference time domain (FDTD) method (see, e.g.,
[1]) solve for the structure’s response in the time domain, and obtain the frequency
domain response by translating the result with fast Fourier transform. FDTD solu-
tions are known to have time-efficient execution for large problems, but the transla-
tion to the frequency domain is limited by the equidistant time-sample requirement
of the transformations. Equidistant time samples result in a linear scale in the fre-
quency domain. PDNs may require characterization in the frequency domain over
several decades of frequency. The linear scale either ignores low-frequency details
or requires an unrealistically large number of points, many of which at the high end
of the frequency range are not needed. This is because PDN components necessarily
come in a limited range of quality factor (Q), which is more readily suited for loga-
rithmic description.

While FDTD does not lend itself to simple implementation by the end user, ana-
lytical plane models based on the cavity resonances (see, e.g., [2]) are easy to pro-
gram in spreadsheet programs or MATLAB for rectangular shapes; solutions based
on the Partial Element Equivalent Circuit (PEEC) (see, e.g., [3]) are easy to program
in SPICE.

67



4.2 Analytical Plane Models

For parallel plane pairs separated by a uniform dielectric material, analytical imped-
ance expressions are available describing the self- and transfer impedances between
rectangular ports. Analytical expressions are available for simple plane shapes, such
as rectangular, triangular, or circular. Of these options, the rectangular shape is the
most widely used, both directly and as a building block, to construct irregular plane
shapes.

4.2.1 Analytical Models for Rectangular Plane Shapes

The parameters are defined in Figure 4.1. Figure 4.1(a) shows a top view of the plane
structure, defining the size of the rectangular plane shape as wx by wy. There are two
ports on the plane pair. Port i is at coordinates (xi, yi), and port j is at coordinates (xj,
yj). Figure 4.1(b) defines the vertical geometry and the material properties. We
assume a uniform plane spacing of h and a uniform relative dielectric constant of εr.
The upper and lower planes have thicknesses of tu and tl, and conductivities of σu and
σl, respectively.

In PCBs with regular lamination processes, as well as in organic packages, the
two planes separated by a dielectric layer may represent either a core, or a prepreg
with the planes belonging to cores above and below. If located on the same core, the
nominal plane thicknesses and conductivities are probably, but not necessarily, the
same. If located on different cores, or if a build-up process is used to create the PCB
or package, the two plane layers may be nominally different. One of the planes may
be of copper with regular thickness, such as 18 µm (0.5 oz) or 35 µm (1 oz), while
the other plane could be a 70-µm (2 oz) or 140-µm (4 oz) copper plane or a similarly
thick aluminum layer for heat-spreader purposes and to help to distribute large
currents.

4.2.1.1 Lossless Cavity Model

If we assume that the plane separation, h, is small compared to any wavelength of
interest, the field can be considered to be constant along the z-axis; this results in a
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Figure 4.1 Rectangular parallel plane pair, separated by a uniform layer of dielectric material.
Part (a) shows the top view and (b) defines the vertical geometry. Not to scale.



2D waveguide cavity with open boundaries. Waves traveling horizontally between
the planes experience full reflection at the open boundaries; this reflection gives rise
to a 2D series of modal resonances at frequencies where the wx or wy dimension
equals integer multiples of the half wavelength. This structure has been analyzed for
planar array antennas [4], for planar microwave circuits [5], and more recently for
PDN applications.

In Figure 4.1, the generic transfer impedance between ports i and j for a lossless
structure is given by:
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ω = 2πf is the angular frequency;
µ is the permeability of dielectric (µ = µ0 = 4π10−7);
c is the speed of light.
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(xi, yi), (xj, yj) are the coordinates of the ports;
(txi, tyi), (txj, tyj) are the port dimensions.

The analytical expression of (4.1) can be solved for any pair of arbitrarily
located points on the planes, either self-impedance or transfer impedance, and is
well suited for programming in spreadsheets with macro capabilities to evaluate the
summations.

If the port dimensions are much smaller than the smallest wavelength of inter-
est, the sinc functions disappear in (4.2) leaving the four cosine terms. Furthermore,
if the two ports are at the same location such that the self-impedance of the plane is
measured, then (4.2) simplifies to:
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Though not limited by finite spatial granularity, as it is the case with SPICE-grid
plane models, the analytical expression has a double infinite series, which for practi-
cal calculations must be truncated. This means that instead of being infinite, we have
to use finite n = N and m = M limits. Figure 4.2 illustrates the effect of truncation
with the simulated impedance of a plane pair of 25.4 × 25.4 cm (10 × 10 inch) size,
50-µm (2-mil) plane separation and dielectric constant of 4.0. The self-impedance
was computed at one of the corners.

There are two major trends to observe as we change the summation limits in
(4.1). As it was detailed for instance in [6, 7], at low frequencies, the impedance min-
ima converge very slowly; at high frequencies, after the last impedance peak in the
summation, the impedance drops monotonically, as opposed to a rising function
that we would expect from the inductive behavior. Since the summation is based on
poles, the impedance maxima included in the summation of a low-loss structure are
captured properly, regardless of the summation limits. To ensure sufficient fre-
quency coverage for the peaks, the N and M summation limits have to be chosen
such that the highest included modal peak is safely above the highest frequency of
interest. With n = N and m = M summation limits along the n and m variables, the
frequencies of the last captured modal resonances are:
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While peaks automatically provide good convergence, the convergence around
the minima is very slow. This is the most critical at the first impedance minimum of
the self-impedance profile, because it usually reaches milliohm values in a low-loss
PCB or package structure. Figure 4.3 shows the convergence with two plots using
the same plane pair that was used for Figure 4.2. Figure 4.3(a) plots the simulated
impedance magnitude, enlarged around the first minimum. Figure 4.3(b) plots the
extracted frequencies of the impedance minimum from each trace. The summation
limit was varied from N = M = 1 to N = M = 20 in increments of one.
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Figure 4.2 Self-impedance magnitude at the corner of a lossless square plane pair: (a) low-
frequency response and (b) high-frequency response.



For laminates with a plane separations much larger than the thickness of either
of the conductive layers, tu or tl, the lossless assumption yields fairly good agreement
with measured data. Figure 4.4 compares the measured self-impedance magnitudes
at a corner of a square parallel plane pair with simulated data using (4.1). The plane
pair was square, with wx = wy = 25.4 cm (10 inches) and h = 0.79 mm (31 mils). The
bare two-sided FR4 laminate had 35-µm (1 oz) copper on either side, and it was
measured in several sizes: while the measurement test points were attached to one of
its corners, the laminate sheet was repeatedly cut into four equal-size sections. First,
the laminate was measured as is with its full size. Second, the sheet was cut into four
squares of wx = wy = 12.7 cm (5 inches). Third, one of the smaller squares was fur-
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Figure 4.3 Convergence of the first impedance minimum as a function of summation limit: (a)
plots the simulated impedance magnitude and (b) plots the minimum-impedance frequency
points.
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Figure 4.4 Comparison of measured self-impedance at a corner of a square pair of planes to sim-
ulated self-impedance using (4.1). Continuous lines: measured data. Small circles: simulated data.
Plane separation is h = 0.79 mm (31 mils). (a) Plane size is wx = wy = 25.4 cm (10 inches). (b) Plane
size is 6.35 cm (2.5 inches).



ther cut into four equal sections of wx = wy = 6.35 cm (2.5 inches). Figure 4.4 shows
the correlation between measured and simulated self impedances for the (a) full-size
and (b) smallest-size squares.

Besides the slow convergence around the minima, another drawback of the
analytical solution based on (4.1) is the dual summation. One option to reduce the
complexity of the calculations is to make use of the natural symmetry of the rect-
angular plane shape. By appropriately partitioning the planes, the responses for
even and odd modes can be calculated, leading to an overall reduction in computa-
tion time [8]. A second possibility to reduce the computational complexity is
to model the plane pair as a section of a rectangular waveguide so that one direc-
tion is automatically accounted for instead of using a summation. By applying
magnetic walls along the opposite sides of length wy, and applying open termina-
tion at the other two sides, the boundary conditions can be captured by a Green’s
function [9].

Finally, another major limitation of (4.1) is that the analytical expression
assumes the structure is lossless. Plane pairs in real PCB exhibit many different types
of losses, of which conductive losses and dielectric losses are generally the most
prominent loss mechanisms. Several investigators have modified (4.1) to include
conductive and dielectric losses. In the following sections, several different lossy
formulations are discussed.

4.2.1.2 Light-Losses Cavity Model

One approach to capture losses is to modify the real wave number, k, with a com-
plex wave number given by [4]:

k j k jk= − = ′ − ′′β α (4.6)
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where tan_δ is the loss tangent of the dielectric material, and δ is the skin depth at
the frequency of interest, given by:

δ
π σµ

= 1
f

(4.8)

The model assumes that there is small dissipation (i.e., k k ).
This model accounts for the attenuation but neglects any changes to the phase

constant β caused by the nonideal conductor and dielectric substrate. For this rea-
son, strictly speaking, the solution is not causal [10]. The overall attenuation con-
stant, α, is calculated by summing the dielectric loss and conductive loss.
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4.2.1.3 Modified Cavity Model Using the Complex Propagation Constant

A second approach to capture losses is to substitute the complex propagation con-
stant for the real wave number, k, in (4.3) [11]. The per-unit-length transmission
line parameters are obtained using a lumped-element model of a radial transmission
line. The effect of the imperfect dielectric substrate is represented by the shunt con-
ductance, Gd, and the conductive losses are represented by the series impedance,
Zcu. The modified cavity model expression and accompanying formula for the
propagation constant are
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4.2.1.4 Equivalent Circuit-Based Cavity Model

A third approach to include losses takes the dual infinite series of (4.1) and trans-
forms it into an equivalent circuit [12]. By using parallel resonant circuits and ideal
transformers, the transfer impedance between port i and port j is:
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The static capacitance of the plane pair is separated (i.e., m = 0, n = 0) from the
higher-order modes in (4.11). Each mode of the structure can be represented as a res-
onant circuit with the resonant frequency equal to (4.13). The equivalent circuit of
(4.11) through (4.14) is shown in Figure 4.5 for two ports.

4.2.1.5 Transmission Plane Model

Finally, a fourth approach for including losses in the cavity model was described in
[10]. In this approach, partial differential equations are derived in the frequency
domain for the parallel plane structure. This yields expressions for the distributed
admittance, Y( ), and impedance, Z( ), of the plane pair which are then substituted
into (4.1). The modified cavity model expression and accompanying formula are
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t is the thickness of the top and bottom metal planes.
In (4.16), σ is a bulk conductivity of dielectric and is zero for FR4-type dielec-

trics. It was included in the derivation because some PDN dielectric materials actu-
ally may have nonzero conductivity to suppress noise.
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In this formulation, the complex, relative dielectric constant, εr(ω), included in
(4.16), is defined over a broadband frequency range to ensure that (4.15) is causal.
The Debye model is used to capture the frequency dependence of the complex
dielectric constant and is included here for reference
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To employ this model the dielectric constant and loss tangent only need be
defined at one frequency point, f0; m1 and m2 are the parameters that define the lin-
ear portion of real part of the dielectric constant. The imaginary part of the dielec-
tric constant (and thus loss tangent, too) will be linear in a narrower range, inside
the m1 and m2 limits.

4.2.1.6 Cavity Model Simulations

To examine the accuracy of the four different lossy plane impedance formulations
introduced above, the plane pair structure shown in Figure 2.1 was simulated. The
m and n summation limits were set to 80 for all the simulations. The formulas were
coded into MATLAB and the results postprocessed and plotted in Excel. Figure 4.6
plots the four lossy impedance expressions alongside measurement data of the test
structure.

The different formulations produce similar results which are fairly well corre-
lated to measurement although with some magnitude offset and frequency offset at
higher frequencies. The transmission plane model, Figure 4.6(d), shows very little
phase offset due to the inclusion of the frequency dependent dielectric constant in
the model.

Plotting the low-frequency behavior, however, reveals several major differences
among the formulations. Figure 4.7(a) plots the low frequency behavior of the
lossless plane expression along side measurement data. Below the series resonances
frequency, both impedance plots show a capacitive slope dictated by the static
capacitance of the plane pair.

Figure 4.7(b) plots the four lossy plane expressions alongside the lossless plane
expression. All but the transmission plane model show differing degrees of low-fre-
quency roll off compared to the lossless case. The low-frequency roll off is due to the
onset of skin effects (i.e., the skin depth approaches the thickness of the metal
planes). Mathematically, the low-frequency response of these expressions can be
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understood by examining the m = 0, n = 0 mode, which should capture the static
capacitance of the plane pair. Substituting m = 0, n = 0 in the lossless case (4.1), the
low-frequency impedance of the plane pair is

( )Z j
h

w w j Cij
x y r

ω
ω ε ε ω

= − =
0 00

1
(4.22)

This is the impedance of a lumped capacitor, C00, representing the static capaci-
tance of the plane pair. On the other hand, substituting m = 0, n = 0 into the modi-
fied plane impedance expression which assumes light losses (4.6) through (4.7)
yields:

76 Characterization and Modeling of Planes and Laminates

Impedance [ ]Ω

0.01

0.10

1.00

10.00

1.E+9 1.E+10
Frequency [Hz]

(a)

Measured

Light losses model

Impedance [ ]Ω

0.01

0.10

1.00

10.00

1.E+9 1.E+10
Frequency [Hz]

(b)

Measured

Modified cavity model

Impedance [ ]Ω

0.01

0.10

1.00

10.00

1.E+9 1.E+10
Frequency [Hz]

(c)

Measured

Circuit model

Impedance [ ]Ω

0.01

0.10

1.00

10.00

1.E+9 1.E+10
Frequency [Hz]

(d)

Measured

Transmission
plane model

Figure 4.6 Measurement data for the test structure shown in Figure 2.1, plotted alongside the
following four lossy impedance expressions: (a) light losses model, (b) modified cavity model, (c)
circuit model, and (d) transmission plane model.
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Equation (4.23) shows that the impedance can only be approximated by (4.22)
if the dielectric thickness is much thicker than the skin depth and assuming light
dielectric losses. The same requirement holds true for the modified plane impedance
expression which uses the complex propagation constant, (4.9):
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The low-frequency impedance of the equivalent circuit based model, which can
be found by substituting (4.12) into (4.11) and solving for the m = 0, n = 0 mode,
places a similar requirement on the plane thickness and dielectric loss:
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Finally, the m = 0, n = 0 mode of the transmission plane model can be evaluated
by substituting (4.16) into (4.15):
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Figure 4.7 Measurement data for the strucutre shown in Figure 2.1, plotted alongside the (a)
lossless model and (b) the four lossy models, together with the lossless model. The low-frequency
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This is the only lossy, plane-impedance expression of the four discussed above
which yields the same result obtained from the lossless plane impedance expression,
(4.22); so it places no apparent limitation at low frequencies on the dielectric thick-
ness or loss tangent. From (4.23) through (4.25), the low-frequency accuracy of the
other lossy plane impedance expressions above are a function of the skin depth and
dielectric loss. In Figure 4.7(b) the impedance frequency deviates from the linear
capacitive slope when the skin depth approaches the thickness of the dielectric.

Simulations were performed to examine the accuracy limitations of the four
lossy impedance expressions. In the first simulation, the dielectric loss tangent,
tan_δ, was swept from 0.001 to 0.2, while the conductivity was set to a very large
value (1025), approximating a perfect conductor. By using a large conductivity, the
skin depth will be smaller than the metal thickness at low frequencies so the impact
of loss tangent on the impedance expressions can be examined. The dielectric con-
stant, εr, was set to an arbitrary value of 4.1 for these simulations. Note that for the
transmission plane model, the loss tangent and dielectric constant were set to these
values at 1 MHz only; at other frequency points, the parameters vary according to
the Debye model to capture the frequency dependence of the loss tangent and dielec-
tric constant. For each value of tan_δ, all four expressions were evaluated and the
loss tangent value was extracted as a function of frequency from the impedance.
Specifically, the loss tangent was obtained from the phase of the impedance as
follows

( )( )tan_ tanδ θ ω= (4.27)

where θ(ω) is in radians. The loss tangent was extracted as a function of frequency.
The upper frequency limit was chosen such that it was much less than the series reso-
nance frequency, where the loss tangent can be reliably extracted from the imped-
ance. If the four expressions placed no limitations on the value of the loss tangent
and the expressions were causal, the extracted loss tangent values would match the
simulated values across the range of extraction frequencies.

Figure 4.8 plots the percentage difference in the extracted loss tangent value
over a range of extraction frequencies and loss tangent values for all four expres-
sions. The light losses formula, in Figure 4.8(a), shows the highest overall difference
in the extracted loss tangent value due to the explicit assumption about losses in this
formulation (i.e., k k′′ ). For loss tangent values less than or equal to 20%, the dif-
ference is better than 1%. Figure 4.8(b) and Figure 4.8(c) show that the difference in
the extracted loss tangent is negligible over a wide range of loss tangent values.
Notice that, for these two plots, the error is increasing as the loss tangent decreases;
although the conductivity is high, the δ/ h term in the denominator starts to influ-
ence the extraction of loss tangent as tan_δ is made progressively smaller. With
higher loss tangent values, at higher extraction frequencies, Figure 4.8(b) and Figure
4.8(c) show less difference in the extracted loss tangent value, as the influence of the
δ/h term becomes negligible. Finally, Figure 4.8(d) plots the difference in the
extracted loss tangent using the transmission plane model; this model shows the
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lowest overall difference in the extracted loss tangent of the four lossy plane
expressions.

In the second batch of simulations, the dielectric loss tangent was fixed to a low
value (0.0001) to approximate a lossless dielectric, while the conductivity was
swept over a large range. In particular, the base copper conductivity (5.8 × 107) was
multiplied by 1, 103, 106, 1012, and 1018. The large range of conductivity values was
chosen to evaluate the limits of the expressions not (necessarily) to represent practi-
cal values. By using a low dielectric loss, the impact of the metal conductivity on the
impedance expressions can be examined. The dielectric constant, εr, was set to an
arbitrary value of 4.1 for these simulations. As before, the dielectric constant and
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Figure 4.8 Surface plots of the percentage difference in the extracted loss tangent across a range
of extraction frequencies and loss tangent values using the (a) light losses model, (b) circuit model,
(c) modified cavity model, and (d) the transmission plane model.



loss tangent were only fixed to these values at 1 MHz for the transmission plane
model. At each conductivity multiplier, all four expressions were evaluated and the
loss tangent and dielectric constant was extracted as a function of frequency from
the impedance. The dielectric constant was obtained directly from the imaginary
portion of the impedance as follows

( )
( )( )( )ε ω

ω ω ω ε
r

x y

h

Z L w w
= −

−Im 0

(4.28)

where L is the inductance of the plane at the series resonance. If the four expressions
placed no limitations on the conductor losses and the expressions were causal, we
expect the extracted loss tangent and dielectric constant values to match the simu-
lated values across the range of extraction frequencies.

Figure 4.9 plots the difference in the extracted dielectric loss using the four dif-
ferent impedance formulations. Figures 4.9(a) through 4.9(c) show a sharply
increasing difference in the extracted dielectric loss as the conductivity is reduced.
Also, there is a slight increase in the difference with decreasing frequency. Both of
these trends are due to skin effects; only at very high conductivities and/or at high
frequencies do we find skin effects be minimized. For the base copper conductivity
(i.e., multiplier of 1), the error in the extracted loss tangent is very significant due to
skin effects. Figure 4.9(d) plots the difference in the extracted loss tangent using the
transmission plane model. This model shows the lowest overall difference in the
extracted loss tangent of the expressions. The increase at the lowest conductivity
values is quite moderate (0.01%).

Figure 4.10 plots the difference in the extracted dielectric constant using the four
different impedance formulations. Figures 4.10(a) through 4.10(c) show very signif-
icant differences in the extracted dielectric constant as the conductivity is reduced
due to skin effects. Figure 4.10(d) plots the difference in the extracted dielectric con-
stant using the transmission plane model. This model shows no dependence of the
dielectric constant on the copper conductivity.

Finally, we present a simple work-around for avoiding the roll-off at low-fre-
quencies due to skin effects observed in most of the lossy impedance expressions. For
example, (4.23) shows that the low-frequency roll off becomes significant when the
skin depth is approximately equal to or greater than the dielectric thickness, h. If we
substitute the following modified expression for the skin depth, δmod, then we can
“clip” the skin depth at low frequencies, thereby avoiding the roll-off while still
maintaining the proper skin effect behavior at high frequencies:

δ

δ

mod =
+

1
1 1

t

(4.29)

where t is the thickness of the upper and lower planes. As an example, δmod was sub-
stituted into the modified plane impedance expression, which assumes light losses
(4.6) through (4.7). Figure 4.11 plots the plane impedance for the structure shown in
Figure 2.1 using the light-losses cavity model and using the modified light losses cav-
ity model, which uses (4.29). The inclusion of (4.29) is observed to remove the
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low-frequency roll-off due to skin effects. Of course, the limitation on the light
losses are not removed by this technique. However, as we observed from the error
plots, inaccuracy due to dielectric losses only start being significant at very high
tan_δ values.

4.2.2 Analytical Plane Models for Arbitrary Plane Shapes

The analytical plane models are based on the cavity modal resonances; in their origi-
nal forms as shown above, they are all limited to rectangular plane shapes. The ana-
lytical models can still be applied to irregular-shape power-ground plane pairs by
using the segmentation method [13, 14]. First we approximate the irregular plane
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Figure 4.9 Surface plots of the percentage difference in the extracted dielectric loss across a
range of extraction frequencies and copper conductivity values using (a) the light losses model, (b)
circuit model, (c) modified cavity model, and (d) the transmission plane model. The sigma factor is
a multiplicative constant applied to base copper conductivity.



shape with the sum of a series of rectangular shapes; these shapes approximate the
irregular plane shape with sufficient accuracy. Second, we assign temporary ports
along the sides of neighboring rectangular shapes. By enforcing the continuity of
voltages and currents at the temporary ports, the impedance matrix of the combined
rectangles can be obtained. The process is illustrated with a simple L shape, which is
decomposed into two rectangles, as shown in Figure 4.12.

The illustration is based on the fact that along the marked line we can decom-
pose the L shape into two rectangles, marked as α and β on the right. The sum of the
two shapes make up the original shape, marked γ. Furthermore, we assume that
before the cut, there are p and q ports in segments α and β, respectively. After the
cut, two matching sets of temporary ports are added along the cut line to the two
segments. To get sufficient accuracy from the segmentation method, the temporary
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Figure 4.10 Surface plots of the percentage difference in the extracted dielectric constant across
a range of extraction frequencies and copper conductivity values using the (a) light losses model,
(b) circuit model, (c) modified cavity model, and (d) the transmission plane model. The sigma fac-
tor is a multiplicative constant applied to base copper conductivity.



ports have to be assigned with a spacing much less than the shortest wavelength of
interest; these temporary ports are marked as c ports and d ports on the figure. The
impedance matrices for α, β and γ can be partitioned into sub matrices correspond-
ing to the c, d, p, and q sets of ports:

Z
Z Z

Z Z
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Z Z

Z Z
Z
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At the temporary ports, voltages and currents must equal on the two sides.
From this condition we get:

Z
Z Z Z Z Z

Z Z Z Z Z
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qd dp qq qd dq
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=
− ′ ′
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
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where
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Figure 4.11 Impedance profile obtained using the light losses cavity model with and without
(4.29). Part (b) is an enlarged view of (a) showing that the two approaches yield identical high fre-
quency results.

p ports

Cut
here

p ports q ports

α
β

q
ports

c
ports

d
ports

γ

Figure 4.12 Illustration of the segmentation method to calculate the impedance matrix of irregu-
lar plane shapes.
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Once the impedance matrix for the entire plane shape is available, the matrix
size can be reduced by eliminating the entries corresponding to the temporary ports.

4.3 Transmission-Line Models

Although transmission-line models are better suited for rectangular plane shapes,
the approach can be extended to handle irregularly shaped planes using adaptive
gridding or transmission matrix models.

4.3.1 Transmission-Line Grid Models for Rectangular Plane Shapes

As shown in Figure 4.13, rectangular plane shapes can be discretized by overlaying a
square or rectangular grid, which divides the planes into unit cells [15–17]. The unit
cells can be square; this will result in a different number of cells along the two axes
for a rectangular plane. Alternately, the same number of cells can be used along both
axes; this method retains the aspect ratio of the planes in the unit cell.

Each cell is then substituted with an equivalent circuit; this circuit represents the
transmission-line behavior along the unit cell’s sides or along their center lines. Fig-
ure 4.14 shows the two fundamental options in terms of assigning transmission lines
to unit cells. When transmission lines are assigned to the borders of the unit cells, the
resulting SPICE grid is closed, with no floating nodes. The transmission lines along
the periphery, however, represent only half of the area compared to transmission
lines inside the grid. It is easy to compensate for this by adjusting the parameters of
the lines along the periphery.

When the transmission lines are assigned to the center lines of the unit cells, all
of the transmission-line segments horizontally or vertically will have the same
parameters, but now we encounter different problems: segments facing the plane
edges will create open nodes, and portions of the original plane area along the edges
will not be covered. These can be corrected for by applying dummy elements at the
open ends to eliminate floating nodes and correcting for the uncovered plane area.

There are several possible options to model the transmission behavior in the unit
cells. Some of the options are shown in Figure 4.15. Discrete RLGC circuits with
fixed parameters can be used in either time or frequency-domain SPICE simulations;
but, except for the lossless case, the model is not causal. Causal frequency-depend-
ent RLGC parameters can be approximated with more complex subcircuits; each
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Figure 4.13 Discretization of a rectangular plane pair into unit cells.



element is still frequency independent, but this approximation may significantly
increase the number of nodes and the run time. For ac simulations only, frequency-
dependent RLGC parameters can be defined. As a further option, we can use the
built-in SPICE transmission line models: either the lossless T line, with optional
external components to approximate losses, or the lossy W-line element. However,
we have to keep in mind that by using transmission-line elements we loose the hori-
zontal connectivity along the unit cells because the input and output potentials of
the transmission-line elements are floating with respect to each other.

The transmission-line matrix model, also called the bedspring model, can cap-
ture arbitrary losses and different thicknesses and/or different conductivities in the
upper and lower conductive planes.

To obtain the unit-cell parameters, we can start with the lossless characteristic
impedance and propagation delay expressions and then add losses as perturbation.
The quasi-static approximation of plane capacitance, C, calculates the plate capaci-
tance for the cell area represented by the transmission line. The propagation delay,
tpd, along the length of the cell gives the second independent parameter. From the
capacitance and propagation delay, the two dependent parameters, the characteris-
tic impedance, Z0, and the inductance, L, can be derived from the basic transmis-
sion-line equations:
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Conductive losses can be calculated separately for the upper and lower planes.
The frequency-dependent resistance can be easily used in ac SPICE simulations. The
model approximates the conductive loss, R, as the sum of dc resistance, Rdc, and skin
resistance, Rskin, assuming a f frequency dependence for the skin resistance:

R R R R R fdc skin skin s= + =, (4.34)

The parallel conductance, G, is the sum of the dc conductance, Gdc, and the
dielectric loss, Gdiel, which is assumed to have approximately linear frequency
dependence.

G G G G G fdc diel diel d= + =, (4.35)

Note that (4.33) through (4.35) still do not result in causal solutions, because
the frequency dependencies of L and C are not included. If necessary, causal solu-
tions can also be included by using the causal RLGC solution described in Section
4.5.5.2.

4.3.2 Transmission-Line Grid Models for Arbitrary Plane Shapes

There are several limitations related to uniform rectangular SPICE grids applied to
arbitrary power plane shapes [18]. As an example, consider the power-ground plane
shape of Figure 4.16.

Figure 4.17 shows the outline of the inner plane shape with a 6.35-mm
(0.25-inch) geometrically uniform square grid fitted over its envelope. The uniform
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Figure 4.16 Within the outer rectangular board outline, there is an inner odd-outline plane shape with a
varying degree of perforations, due to smaller and larger holes, as well as with a large cutout.



grid has 28 cells horizontally and 20 cells vertically, totaling 28 × 20 = 560 cells and
(28 + 1) × (20 + 1) = 609 nodes.

Figure 4.17 shows that dependent on the actual outline and cutouts, there may
be unnecessary cells and nodes in the uniform grid. In this example, out of the total
of 560 cells (and 609 nodes), altogether there are 91 cells outside of the actual plane
shape we want to simulate. Another problem with using uniform rectangular grids
for irregular shapes is that in SPICE, run time grows sharply as the number of nodes
increases. Any unnecessary nodes increase the run time without the benefit of higher
resolution/accuracy. Furthermore, there may be areas where smaller grid cells may
be necessary (e.g., around odd-shaped outline contours or in perforated areas); if
the entire plane is meshed with the smallest grid size, the total grid number may
again increase unnecessarily. Finally, modal resonances may not be captured cor-
rectly with uniform grids. One of the major roles of SPICE models of planes is to
capture modal resonances so that bypass capacitors can be applied properly to
smooth out the impedance profile. Modal resonance frequencies depend on the pos-
sible standing-wave pattern; that pattern is determined by the actual boundary
shapes and cutouts. If it is not captured accurately, the simulated resonance
frequencies are in error.

To handle complex outline shapes, results are shown below using an adaptive,
variable-size cell SPICE grid. The shape is more coarsely gridded in solidly filled
areas and gradually converges into a finer mesh around the shape’s outline and
(possible) inner cutout contours by using square unit cells. The resulting SPICE grid
preserves the actual static plane-capacitance by dropping cells completely that are
not at least partly on the plane shapes and adjusting the electrical parameters of unit
cells that are either not entirely on the plane shape or are not solidly filled (e.g., due
to antipads).

In each unit cell, the amount of metal within the unit cell’s area is calculated sep-
arately for the two conductive planes; the conductive loss values are adjusted
according to those fill ratios. The common set of the two planes’ metal contents is
also calculated (as shown in Figure 4.18), and this is used to adjust the transmission
characteristics of the SPICE grid elements.
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Figure 4.17 Outline of the highlighted inner plane pair shape from Figure 4.16, with a uniform
square-unit-cell SPICE grid laid over it. Each side of the overlaid grid cells represents one piece of
transmission line in the equivalent SPICE circuit.



To further preserve the static capacitance value of planes, as indicated in Figure
4.19, compensating capacitors are introduced in the SPICE grid to account for the
missing coverage on the boundary of different-size unit cells.

Finally, following the same procedure, multiple plane pairs connected in parallel
by vias can be handled as separate pairs first, then the SPICE grids of individual pairs
can be linked. Figure 4.20 shows the adaptive grid for the example plane shape. Fig-
ure 4.21 shows the measured impedance profile compared to the simulated
responses with uniform and adaptive variable-size cell grid.

Note that the adaptive grid captures the static capacitance and the modal reso-
nances accurately. Since the uniform rectangular grid follows the outer envelope of
the shape, it overestimates the static capacitance (as it does not account for the cut-
outs and missing portions along the jagged outline); it also overestimates the first
modal resonance frequency. However, with the rectangular uniform grid, both con-
ditions cannot be met at the same time by adjusting the envelope of the rectangular
uniform grid: any attempt to decrease the outline to match the static capacitance
more closely would increase the predicted first modal resonance frequency further,
and vice versa.
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The first modal resonance from the propagation delay along the longer side of
the rectangular envelope can be calculated from the length and dielectric constant: it
is 800 MHz for the first peak. Note that there is a small glitch at around 800 MHz in
the impedance simulated with a rectangular uniform grid. It is not pronounced
because of the location of the test point. If the plane had no cutout and were to fol-
low the rectangular outline of the envelope, the modal resonance would be highly
suppressed at this same location. However, due to the odd outline and cutout of the
inner plane shape, the actual plane cut has a much lower first modal resonance fre-
quency, about half of the frequency obtained from the uniform grid.

The dual peak at the first modal resonance in the measured impedance profile of
Figure 4.21 is the result of a trace passing over both the inner and outer plane shapes
shown in Figure 4.16. This was proven in measurement by cutting the inner plane
shape along its periphery, thus cutting the trace while leaving intact the inner plane
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Figure 4.20 Result of adaptive subgridding on the inner plane shape shown in Figure 4.16.
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Figure 4.21 Impedance profiles of the inner plane shape shown in Figure 4.16, obtained from
measurement and simulation using a rectangular uniform grid and adaptive grid.



shape, and then remeasuring. Figure 4.22(a) shows the new measured impedance
profile compared against the impedance profile obtained with the same adaptive
grid that was used for Figure 4.21. Figure 4.22(b) shows the simulated results using
Ansoft SIwave to analyze the whole board shown in Figure 4.16. The board was
simulated, including and excluding coupling from the trace to the inner plane shape
(all other coupling was enabled). The simulation results demonstrate that the trace
that crosses over the inner and outer plane shapes is responsible for the dual peak
observed in the measurement results shown in Figure 4.21.

To capture in simulation the coupling between split plane shapes using the adap-
tive grid mode, both plane shapes can be modeled with its own adaptive grid and the
nodes along the interfacing contour can be connected with coupling capacitors to
represent the plane-to-plane edge capacitance between the two shapes [19].

4.3.3 Transmission Matrix Model for Arbitrary Plane Shapes

The transmission matrix model [20] can be used to model both rectangular and arbi-
trary plane shapes. The method relies on the fact that power planes are linear net-
works, and as such the plane can be subdivided into smaller networks and the
networks cascaded. The overall network response is simply the product of the indi-
vidual transfer matrices. (Note that only transfer matrices are multiplicative, others,
like [S] or [Z] are not.) This technique can be applied to irregular plane geometries,
like the L-shaped structure in Figure 4.23. Although the size of the matrices associ-
ated with sections 1 and 2 of Figure 4.23 do not match, the matrix array for section
2 can be padded with zero matrix elements to match the matrix size of section 1.

The transmission matrix method starts with dividing the plane into unit cells, as
shown in Figure 4.23. Each cell is represented by an equivalent circuit representation
using either T or Π models. Starting with plane section 1 in Figure 4.23, the larger
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Figure 4.22 (a) Impedance profiles of the inner plane shape shown in Figures 4.16 obtained
from measurement and simulation using an adaptive grid. Measured after cut around plane
periphery. Part (b) shows field solver results.



rectangular shape can be represented by a number of unit cell columns, in this case 3.
Each N × 1 unit cell can be represented as a 2N × 2N matrix formed by N input ports
and N output ports. Thus the transmission matrix for section 1 is a 6 × 6 matrix
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Equation (4.36) can be rewritten in a simpler form:
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1
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1 1

=






(4.37)

where [T1A], [T1B], [T1C], and [T1D] are 3 × 3 matrices. Then the overall network for
section 1 (of Figure 4.23) can be obtained by multiplying the individual matrices for
each column. Since all the matrices for each of the three columns are the same, the
response for the entire geometry can be obtained from a single 6 × 6 matrix as
follows

[ ] [ ]T Tm = 1

3
(4.38)

If the input and output ports are open circuited, then the [Tm] would be multi-
plied by the identity matrix as follows

[ ] [ ][ ][ ]′ =T I T IL m R (4.39)

Then section 2 of Figure 4.23 can be included by modifying the identity matrix
on the right side of (4.39), [IR], as follows. The transmission matrix for section 2 is a
4 × 4 matrix that can be written as:

4.3 Transmission-Line Models 91

1

Unit cell
columns

Section
1

Section
2

N

Figure 4.23 Top view of an L-shaped plane.
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which can then be incorporated into the identity matrix, [IR], as follows:

[ ]′ =I

T T T T

T T T T

I

T T T TR

11 12 13 14

21 22 23 24

31 32 33 3

0 0

0 0

0 0 0 0 0

0 4

41 42 43 44

0

0 0

0 0 0 0 0

T T T T

I

























(4.41)

The transmission matrix for the entire structure is then

[ ] [ ][ ][ ]′ = ′T I T IL m R (4.42)

Knowing the transmission matrix for the network, one can now determine the
impedance matrix [Z], including the impedance at specific points on the plane.

4.4 Effect of Plane Parameters on Self- and Transfer Impedances

In this section, we examine how the plane parameters influence the plane impedance
and resonances. Specifically, the impact of the dielectric thickness, plane thickness,
number of power ground plane pairs, and dielectric constant and dielectric loss on
the plane impedance is discussed [21]. The rectangular plane structures were simu-
lated using the transmission-line grid method with lossless transmission lines and
external components to approximate the losses. Even though the model is
noncausal, it is sufficiently accurate to show how the impedance profile changes as a
function of the plane parameters.

4.4.1 Impact of Dielectric Thickness with Regular Conductors

Resonances of bare planes can contribute to and increase simultaneous switching
noise, ground bounce, or Vcc bounce. Thin dielectric materials by themselves can
effectively help to suppress plane resonances of bare boards. The mechanism
responsible for this is best understood by looking at the real part of the propagation
constant of the transmission line segments in the equivalent model circuit. The atten-
uation of a matched interconnect is:

( ) ( ) ( )A f
R f

Z
G f Z

dB s

o
d o= +









435. (4.43)

92 Characterization and Modeling of Planes and Laminates



where Z0 is the characteristic impedance of the transmission line, and Rs(f) and Gd(f)
are the series conductive and parallel dielectric loss values versus frequency. As the
dielectric thickness decreases, skin effect losses remain constant, but the characteris-
tic impedance, that is, Z L C0 = / , decreases proportionally with the dielectric

thickness. This happens because inductance and capacitance are proportional and
inversely proportional to the dielectric thickness, respectively. With decreasing
dielectric thickness, the dielectric loss term eventually decreases, thus leaving the
skin loss responsible for the suppression of plane resonances. This simple approxi-
mation shows how thin dielectrics between power and ground planes have tremen-
dous advantages for power distribution systems at high frequencies.

A uniform rectangular lossy SPICE grid model was applied to simulate a pair of
25 × 25 cm (10 × 10 inch) parallel planes with 35-µm (1-oz) copper on either side,
but with variable thickness of dielectric separation. The dielectric constant was
assumed to be 4. The grid size was 20 × 20, providing at least 1 GHz of useful upper
limit for the model.

Figure 4.24 shows the magnitude and phase of simulated self-impedance mea-
sured between the upper and lower planes at the center. As the dielectric thickness is
reduced, the impedance profile becomes smoother at high frequencies. There is
another obvious advantage: due to the increase of static capacitance, the low-fre-
quency impedance is reduced. In turn, this reduction helps to reduce the need for
low-frequency bulk capacitors. Furthermore, this results in a complete suppression
of plane resonances for dielectric thicknesses below 8 µm (0.3 mil). Phase figures
manifest this trait as well [see Figure 4.24(b)]; with thin dielectrics, the phase of the
self-impedance becomes more resistive. Also note that the slant of the self-imped-
ance magnitude at high frequencies is due to the increase of skin resistance with the
square root of frequency. Figure 4.25 proves the assumption that increasing series
losses create a low-pass transfer function. While dielectric thicknesses above 25 µm
(1 mil) yield a transfer function with noticeable peaks at high frequencies. A thick-
ness of 2.5 µm (0.1 mil) creates a flat response. Even a thinner dielectric separation
provides a monotonic low-pass function. The series losses also increase the upper
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Figure 4.24 Effect of dielectric thickness on the self impedance of a pair of 25 × 25 cm planes,
with 35-µm copper on either side. (a) The simulated self-impedance magnitude and (b) the phase
are probed at the center of planes.



frequency limit of the simulation model by reducing the reflections, thereby effec-
tively creating a resistor rather then transmission line grid at high frequencies. The
illustrations in this section are shown for 10 × 10-inch plane sizes, smaller plane
shapes result in higher characteristic impedance. Hence, from (4.43) the damping of
resonances due to conductive losses will be less.

4.4.2 Impact of Plane Thickness

While the advantages of thin dielectrics are clear from the simulations results of
Figures 4.24 and 4.25, it is not easy to manufacture and process a very thin dielectric
layer of a few micrometer or less thickness with the usual several micrometer or
more copper layers. With a 0.25-µm (0.01-mil) dielectric layer, the conductor layers
may be about 100 times thicker.

To look at the other possible extreme, Figures 4.26 and 4.27 show the same
structure under the same assumptions as Figures 4.24 and 4.25, except the conduc-
tive layer on both sides is assumed to be 0.25-µm (0.01-mil) copper. Note that the
skin depth in copper at 1 GHz is approximately 2 µm (0.08 mil); that depth is about
eight times higher than the selected copper thickness. Hence the series loss resistance
is less dependent on frequency. By comparing Figure 4.24 to Figure 4.26 and Figure
4.25 to Figure 4.27, we can see that the series losses of the 0.25-µm conductive lay-
ers still leave considerable peaking in the impedance profile with thick (> 25-µm)
dielectric layers.

In case of thin conductive layers, the high-frequency impedance does not drop
inversely proportionally to the plane separation (as one would expect based on the
equivalent inductance between the planes). Because the impedance now becomes
limited by the series ac loss resistance. With a 0.025-µm (0.01-mil) copper conduc-
tors, the self-impedance profile is almost totally flat, because near 10 MHz the
impedance of the static capacitance intercepts the series resistance. The higher series
resistance also creates stronger low-pass filtering.
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Figure 4.25 Effect of dielectric thickness on the transfer impedance of a pair of 25 × 25 cm
planes, with 35-µm copper on either side. The simulated magnitude of the transfer impedance is
probed between the center and one of the corners of the planes.



On the other hand, using very thin conductive layers alone is not practical either
because the copper weight may be needed to handle the large dc currents in the sys-
tems. However, by using both thin dielectric and thin conductive layers, we can pro-
vide the necessary copper weight by stacking up several of these thin layers. At the
same time, this will reduce the impedance further because of the parallel connection
of individual plane pairs. A typical 50-µm dielectric separation with 35-µm (1 oz)
copper has a total thickness of 120 µm. If we used the 120 µm total thickness and we
stacked up 240 pairs of 0.025-µm dielectrics with 0.025-µm conductive layers, we
would end up with the same total thickness, same amount of total conductor weight
on either side, and (neglecting the connecting impedance between the stacked lay-
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Figure 4.26 Effect of dielectric thickness on the self impedance of a pair of 25 × 25 cm planes,
with 0.25-µm copper on either side. The simulated self-impedance (a) magnitude and (b) the
phase, probed at the center of planes.
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Figure 4.27 Effect of dielectric thickness on the transfer impedance of a pair of 25 × 25-cm
planes, with 0.25-µm copper on either side. The simulated transfer impedance magnitude is
probed between the two planes from the center to the corner.



ers) an approximately 25-µΩ flat resistive impedance in the 10–1,000-MHz fre-
quency range. However, to use multiple thin conductive and dielectric layers in
large-size rigid PCBs, several technological problems have to be addressed first.

4.4.3 Parallel Plane Pairs

Stacking power-ground plane pairs in parallel has most of its advantages if we
reached the resistive bottom of the impedance profile with the thin dielectrics
already. As illustrated in Figure 4.28, in the unsaturated range of the curves, a
smoother impedance profile is obtained using one plane pair with thinner dielectrics
as opposed to a stack of several thicker laminates.

4.4.4 Impact of Dielectric Constant and Dielectric Losses

The granularity of the power-ground plane models is important: each transmission
line segment in the model should represent a small fraction of the wavelength of the
highest frequency of interest. With a 15.24-cm (6-inch) square plane with 8 × 8 grid
and εr = 4 dielectric constant, the accuracy of the model significantly deteriorates
above 2 GHz. Since the propagation delay goes linearly with εr , the same grid

model is limited to about 1 GHz and 0.5 GHz, as the dielectric constant is increased
to 16 and 64.

The typical PCB materials have been optimized for low-loss signal transmission;
as a result, they do not provide sufficient suppression of plane resonances. If used
only between the power/ground planes, intentionally high dielectric losses may be
utilized. Figure 4.29 shows the effect of dielectric losses on the real part and magni-
tude of the self-impedance. The impedance magnitude curve show that a dielectric
loss tangent of 0.3 or higher is sufficient to suppress almost completely the plane
resonances.
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Figure 4.28 (a) Self- and (b) transfer impedance magnitude of a pair of 25 × 25 cm parallel
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stand-alone pair with a 12.5-µm dielectric separation and four pairs of planes with a 50-µm dielec-
tric separation. The simulated self-impedance is probed between the planes at the center; transfer
impedance is probed between the two planes from center to corner.



4.4.5 Run Time Versus Number of Cells

The upper end of the valid frequency range of SPICE grid models depends linearly
on the number of cells along each side. As the number of cells increases lin-
early along one side, the total number of cells and nodes in the SPICE equivalent
circuit increases quadratically. The run time of SPICE is a nonlinear function of
the number of nodes. Eventually, the total run time increases very sharply as we
try to increase the upper frequency end by increasing the number of cells. Faster
computers help, but the trend stays unchanged. Figure 4.30 shows the runtime as
a function of number of cells along one side in a square grid. The run time is nor-
malized to the value obtained with 10 cells along a side. Note that increasing the
number of cells along a side from 5 to 30 (by a factor of 6) increases the number
of cells and SPICE nodes by a factor of 36; this increases the run time by a factor of
91.
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measured at the center of a pair of 25 × 25-cm planes with a dielectric separation of 50-µm
(2-mil), dielectric constant 4, and 35-µm (1 oz) copper.
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4.5 Characterization of Plane and Laminate Parameters

In this section, we discuss approaches to calculate the dc resistance of planes with
and without perforations. We use these approaches to simulate the dc voltage drop
on planes and characterize the mid- and high-frequency plane parameters.

4.5.1 DC Resistance of Planes

At high frequencies the plane thickness matters little, because the skin depth limits
the current flow to a thin layer on the plane surface. At low frequencies (significantly
below the frequency at which skin depth equals the plane thickness) the entire vol-
ume of plane carries the current. Especially in high-power applications, the dc resis-
tance may become a major limiting factor. Therefore, it is important to understand
how to characterize the plane resistance.

With the definitions of Figure 4.31, the dc resistance, Rdc, of a rectangular con-
ductor shape composed of a homogeneous material of conductivity σ, can be calcu-
lated as:

R
l

wtdc = 1
σ

(4.44)

where σ, l, w, and t are the conductivity of the plane in S/m, length, width, and thick-
ness of plane in meters. Equation (4.44) assumes that not only the conductive mate-
rial, but also the current flow is homogeneous in the material; in other words, the
current distribution is assumed to be uniform through the entry and exit surfaces at
the shaded sides. Equation (4.44) can be simplified by introducing the Rs sheet
resistance:

R
t

R R
l
ws dc s= =1

σ
, (4.45)

In printed circuit boards the typical conductor material is copper, either electro-
deposited or rolled-annealed. The conductivity of raw bulk copper at room temper-
ature is σ = 5.8E7 S/m. The plane thickness is defined implicitly by the weight of the
copper plane. The copper weight is given for 1 ft2 (or 0.0929 m2) of material. The
density of copper is 8,920 kg/m3. The weight of the copper is usually given in ounces
where 1 oz is 28.35g. From the above numbers, a one-ounce copper plane corre-
sponds to a nominal 34.2-µm plane thickness. Eventually, the porosity of material
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Figure 4.31 Parameters defining the dc resistance of a homogeneous rectangular plane between
its opposing parallel sides.



and the surface roughness influence the sheet resistance also. The plane thickness
may vary, too, with the processing steps during lamination. Treatment steps, espe-
cially when multiple repairs are used, will tend to reduce the plane thickness.

When the tooth structure of the copper has significant peaks and valleys with
respect to the overall thickness of the plane, it is reasonable to assume that the dc
resistance comes primarily from a plane thickness between the baselines of the tooth
profiles, because we can expect little current to penetrate the individual bumps. The
definition of equivalent plane thickness is illustrated in Figure 4.32.

Organic packages have copper planes; therefore the above numbers apply. For
high-temperature cofired ceramic packages, the conductive layers are made of tung-
sten with a typical bulk resistivity of 7.5E−7 Ωm; this translates to 1.33E6 S/m, as
opposed to 5.8E7 S/m for copper. The manufacturing process may require vent holes
on solid planes; this perforation increases the resistance. The resistance increase can
be calculated similar to the effect of the antipads.

Due to practical design constraints, using rectangular plane shapes with uni-
form current distribution is rather rare. A somewhat more practical scenario is
when current spreads out in a radial fashion, for instance at the entry point around a
copper slug. The spreading resistance is shown by the resistance of planes between
two concentric circles.

With the definitions of Figure 4.33, the dc resistance, Rdc, of the homogeneous
conducting plane between the concentric circles of radii r1 and r2 is given by:

R
R r

rdc
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
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
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2
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1π
ln (4.46)
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Figure 4.32 Cross sections of (a) rolled-annealed copper foil and (b) electrodeposited foil. Rough
surface leaves less copper for current flow not only at high frequencies, but also at dc. (Courtesy of
Sanmina-SCI.)
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Figure 4.33 Parameters defining the dc resistance of a homogeneous solid rectangular plane
between concentric circles.



where Rs is the sheet resistance in Ω-square and r1 and r2 are the radii of concentric
circles in arbitrary but identical units. Here, too, the assumption is uniform current
flow: the current density within each concentric circle is independent of direction.

Another realistic (but still simple) scenario is to calculate the resistance between
two circular connections on a large plane. Reference [22] provides an approximate
closed-form expression for the resistance. With the notions of Figure 4.34, and
assuming a plane thickness of t, radii of connecting hemispherical electrodes of a,
and electrode center-to-center spacing of d, the resistance is:
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(4.47)

4.5.2 Measuring DC Resistance of Planes

To measure the sheet resistance of a conductive foil, we can use the definition from
Figure 4.31. A known number of squares can be measured by sending through a uni-
form dc current and then measuring the voltage drop. If we use a large number of
squares (long, skinny plane shape), a single entry and exit point may be sufficient; all
that needs to be measured is the voltage drop across one square of plane where the
current is sufficiently uniform. Alternatively, to ensure uniform current distribution,
the entry and exit connections can be formed of multiple connections. Figure 4.35
shows this measuring arrangement on a 25.4 × 2.54 cm (10 × 1 inch) strip of
two-sided PCB laminate with 1-oz copper on either side. The copper foils are
shorted at the end to create a loop. Eight power resistors are soldered to the copper
foil, four to each end.

By measuring the voltage drop along a known number of squares generated by a
uniform current, we obtain the sheet resistance directly. The accuracy of measure-
ment depends on how accurately we can measure the voltage and current across the
plane as well as how accurately we can count the number of squares. Larger plane
sizes make it easier to maintain good accuracy when we cut and trim the conductive
sheet.

In a finished package or PCB, measuring the dc resistance of the planes is not
easy, usually because we do not have the number of connection points necessary for
accurate measurements. If we measure around vias, the spreading resistance at the
entry and exit points will distort the data. However, we can measure the dc drop on
the planes with respect to a selected reference point. When we measure dc voltage,
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Figure 4.34 Two identical hemispherical electrodes of radii a on a plate of finite conductance
and thickness of t.



connecting to bypass capacitors is acceptable; as long as we use a voltmeter with
high input resistance, the presence of capacitors will not alter the result.

4.5.3 Effect of Perforations on DC Plane Resistance

In PCBs and packages, the vertical signal connections require antipad holes around
via barrels. The antipads reduce the amount of the conductive material and increase
the plane resistance. With a uniform array of antipads, and as long as the remaining
webbing is not very small (see Figure 4.36), we can approximate the sheet resistance
by applying a correction factor:

′ =
− ∑

R R
total area

total area cutout areas s (4.48)

With heavy perforations, where the remaining webbing is small, detailed mesh-
ing is necessary to take into account the current crowding at the narrow sections.
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Figure 4.35 Setup showing the dc resistance measurement.
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Figure 4.36 Illustration of plane perforations.



4.5.4 Simulating DC Voltage Drop and Effective Plane Resistance

Sheet resistance and resistance between concentric circles are useful concepts for
understanding the dc drop on planes, but real-life connections seldom follow these
simple geometries. With a complex geometry, the calculation of voltage drop
requires detailed simulations. SPICE can also be used with a resistive grid. It is basi-
cally the same grid as discussed in Section 4.3.1, except we can omit the inductive
part for the planes and all capacitive components. Also, the resistive grid can also
take into account the effect of light perforations. Figures 4.37 and 4.38 show the
voltage drop over a square shape of 35-µm (1-oz) copper plane, with 1-A dc current
and two different connection schemes. We assume that the load connects at 25
nodes in the middle of the plane, whereas the source is connected to 7 nodes around
the lower right corner. The simulation deck assumes a 1-A dc current total uni-
formly distributed among the 25 entry nodes at the center. The seven exit nodes at
the lower right are all tied to SPICE node 0. The voltage surface exhibits a local peak
where the 1-A current enters the plane. There is a large gradient of voltage in the
lower right quadrant of the plane where the conductive plane is effectively utilized.
The voltage gradient is low in the opposite direction at the upper left of the plane;
this low gradient indicates that this portion of the plane, does not contribute effec-
tively to carrying the current between the entry and exit points.

4.5.5 Characterization of Mid- and High-Frequency Plane Parameters

The procedure outlined below assumes rectangular planes, and a uniform and
homogeneous cross section and materials. We also assume that the wx and wy

dimensions of the planes (see Figure 4.1) are known: they can be obtained with suffi-
cient accuracy either from the board CAD file or from mechanical measurements on
the finished board. Also, as long as the dielectric material in all pairs is the same, the
procedure below can be applied to multiple plane pairs connected in parallel by
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Figure 4.37 Voltage drop on 35-µm (1-oz) plane due to 1-A dc current: (a) shows the floor plan
and connections and (b) shows the voltage drop surface.



many vias distributed evenly over the planes. In this case, the h separation will be
the parallel equivalent of the individual laminate thickness values. For two parallel
plane pairs with h1 and h2 plane separations, the equivalent plane separation is:

h

h h

=
+

1
1 1

1 2

(4.49)

There are parameters, however, that on a finished board cannot be measured
directly without destructive probing: the plane separation, thicknesses of planes,
and surface roughness of planes. Furthermore, the electrical properties of the dielec-
trics and metals are not usually measurable on finished boards, due to cutouts and
the stackup.

To obtain an estimate for the dielectric constant and the plane separation, we
can use the formulas for the static capacitance and modal resonance frequencies, as
illustrated in Figure 4.39. The measured static plate capacitance can be equated to
its calculated value. This value has two unknowns: εr and h (since we assumed that
the horizontal dimensions of the rectangular planes, wx and wy are known). The
parallel-plate modal resonance frequencies are the integer multiples of where the
half wavelength equals the wx or wy dimensions. The second formula in (4.50) takes
the lowest resonance frequency along the wx dimension.

C
w w

hp r
x y= ε ε0 (4.50a)

f
w

res

x r

= 1

2 0 0ε ε µ
(4.50b)
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Figure 4.38 Voltage drop on 35-µm (1 oz) plane due to 1-A dc current: (a) shows the floor plan
and connections and (b) shows the voltage drop surface.



In the formulas, ε0 and µ0, as well as wx and wy, are frequency-independent con-
stants. Therefore, as long as εr is approximated as frequency independent, we can
solve for εr and h. By rearranging (4.50), we get:

ε
ε µ

ε εr

x res

r
x y

pw f
h

w w

C
=









 =1

4 2 2
0 0

0, (4.51)

If the capacitance is frequency independent, its value can be obtained from a
low-frequency measurement point with (5.27). The frequency has to be high enough
to ensure a reliable and low-noise measurement but low enough to ensure that the
modal impedance minimum will not distort the result.

4.5.5.1 Determining the Modal Resonance Frequency of Lossy Dielectrics

If conductors and dielectrics were all ideally lossless, the first modal resonance fre-
quency, fres, could be obtained by probing the plane pair almost anywhere. However,
with conductive and dielectric losses, the impedance profile and the frequencies of
the modal resonance peaks do depend on the location over the planes. Furthermore,
the peaks are not unique anymore: the frequency of the peak depends on how we
define the peak itself. The peak implies maximum magnitude of impedance. Reso-
nance, however, is usually understood to happen at frequencies where the imaginary
part is zero; hence, the phase of impedance is zero. As shown in Figure 4.40, the val-
ues extracted according to these two definitions will be close, but not exactly the
same. Figure 4.40 shows the extracted first modal resonance frequency from the
simulated impedance profile of a lossy pair of FR4 planes with 35-µm (1-oz) copper
on either side and with plane dimensions of wx = 25.4 cm (10 inches), and wy = 12.7
cm (5 inches). Note that the frequency extraction is not unique; the values depend on
the location on the planes. If, instead of impedance magnitude peak or phase zero
crossing, we define the resonance frequency where the phase derivative has its
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Figure 4.39 Impedance magnitude versus frequency plot, identifying the two parameters in
(4.50).



extreme value, the extracted frequency becomes the same, regardless of the location
on the planes.

Figure 4.41(a) shows the same pair of planes with the first derivative of phase
plotted at one given location on the planes. Figure 4.41(b) shows the first modal res-
onance extracted from the extreme value of phase derivative (in case of first modal
resonance: minimum) over the surface of the planes.
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Figure 4.40 Extracted first modal resonance frequency from the simulated impedance of a lossy
pair of planes with lossy dielectric. Part (a) shows the frequencies where the impedance magnitude
is the highest. Part (b) shows the frequencies where the phase of impedance crosses 0. The gap in
the middle reflects locations where the modal resonance is suppressed by the 2:1 aspect ratio.
(The sharp slope in the middle is due to plotting artifacts.) The floors of the charts represent the
surface of the planes.
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Figure 4.41 Extracted first modal resonance frequency from the simulated impedance of a lossy
pair of planes with a lossy dielectric: (a) shows the first derivative of frequency at the corner of the
planes and (b) shows frequencies where the first derivative of the phase has its extreme. The floor
of the graph represents the surface of the planes.



As a summary, for plane pairs where the losses are not negligible (increasingly
the case with thinner laminates), the first modal resonance frequency should be
extracted from the extreme value of the phase derivative. Note, however, that phase
itself is already more noisy in measurements than magnitude. The derivative of the
phase becomes even noisier due to the high-pass nature of the derivative process.
Therefore, measuring the plane parameters based on this procedure requires averag-
ing and narrow measurement bandwidth to sufficiently suppress noise. Measured
examples will be shown later in Section 4.5.5.5.

4.5.5.2 Dielectric Constant and Dielectric Loss

Now we can return to (4.50) and continue the parameter extraction using the static
plane capacitance and the frequency of lowest modal resonance. The relative dielec-
tric constant appears in both constraints, but with (5.28) we cannot extract the static
plane capacitance at the first modal resonance frequency; there will be at least one,
possibly two or more decades of frequency separation between the frequencies of the
static plane capacitance and first modal resonance. We can uniquely solve for the
two unknowns from (4.49) only if εr were frequency independent. If εr is not fre-
quency independent, we have to know and model its frequency dependency. We
have to obtain a scaling factor for εr to the frequency of first modal resonance before
we solve for the two unknowns.

By measuring the complex impedance of the DUT, we could obtain the capaci-
tance from the imaginary part and the loss tangent from the phase of the impedance.
Unfortunately, with low-loss materials, the phase angle is very close to −90°; the
finite accuracy of measuring instruments will not allow us to accurately measure the
loss tangent. Knowing how the frequency-dependent capacitance and frequency
dependent loss tangent relate to each other can help us in characterization. From the
causality constraint of impedances, we know that the real and imaginary parts of the
impedance are interrelated; their values and their frequency dependencies are linked
to each other [23]. Dielectric constant and dielectric loss and inductance and resis-
tive loss share tightly coupled frequency dependency [24]:

( ) ( ) ( )H jω α ω β ω= + (4.52)

( ) ( ) ( )
( )α ω α

ω

π

β

ω
= −

−−∞

∞
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2

2 2

u

u u
du (4.53)

( ) ( )
β ω

ω

π
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ω
=

−−∞

∞

∫
u

u
du

2 2
(4.54)

The dielectric constant and dielectric loss are expressed with the real and imagi-
nary parts of the complex permittivity:

( ) ( ) ( ) ( )( )ε ω ε ω ε ω ε ω δr r r rj j= ′ − ′′ = ′ −1 tan_ (4.55)

Equation (4.55) also defines the loss tangent, tan_δ. In its general form, (4.51)
allows for a number of different frequency dependencies. The real and imaginary
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parts of the complex permittivity show very complex frequency dependencies as fre-
quency varies from a few Hertz up to light wave frequencies. At lower frequencies,
dipolar and ionic relaxation are typical; at higher frequencies atomic and electronic
resonances are typical. Relaxation losses typically exhibit a changing real part of
permittivity in a relatively narrow frequency range accompanied by a peak in the
imaginary part. Relaxations are usually modeled by the Debye relaxation model
[25], named after the chemist Peter Debye. The relaxation model for a single con-
tributor can be expressed as:

( )ε ω ε
ε

ωτ
= +

+∞
∆

1 j
(4.56)

where the first term is the high-frequency asymptotical permittivity, ∆ε is the
permittivity change between low and high frequencies, and τ is the relaxation time
of the material.

Multiple relaxation processes over a broader frequency range can be modeled
by a sum of N first-order relaxation terms:

( )ε ω
ωτ

=
+=

∑ a

j
i

ii

N

11

(4.57)

which is suitable to capture any frequency dependency.
Experimental data shows that for a large number of commonly used PCB mate-

rials the dielectric constant drops, whereas the dielectric loss tangent increases with
the same percentage value over a logarithmic frequency scale. In other words, on a
linear-logarithmic scale, both the dielectric constant and the loss tangent are
straight lines. Reference [26] shows that the measured capacitance of FR-4 lami-
nates is constant up to about 1 kHz and drops linearly on a logarithmic frequency
scale from 1 kHz to 10 GHz. To maintain causality and at the same time to meet
common-sense expectations, the responses should deviate from this linear shape at
very low and very high frequencies. If the curves maintained their slope over all con-
ceivable frequencies, it would result in infinite capacitance at dc and infinite loss
tangent at infinite frequency.

To obtain a simpler formula to approximate the empirical data, (4.57) can be
modified to replace the finite sum either with an integral [26] or infinite sum [27] so
that the multipole Debye model yields a linear change on the logarithmic frequency
scale between a user-selected ω1 lower frequency and ω2 upper frequency:

∆ ∆ ∆′

+
→ ′

− +
= ′

−

+
+ε

ω

ω

ε
ω

ε

ω ω

ω ωi

i
x

j m m
dx

j m m

j

j

1 1
10

2 1 2 1

2

1

ln

ln101

2

1 x m

m

i

N

=
∫∑

=

(4.58)

where m1 = log10(ω1) and m2 = log10(ω2).
The causal frequency dependence of the dielectric constant and loss tangent

from (4.58) are illustrated in Figure 4.42.
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Note that (even though we may want to maintain causality in our models) if we
need only the frequency range where the data is a straight line on a linear-logarith-
mic scale, an even simpler approximation can be used. From a dielectric constant
and slope at a working frequency, fw, we can calculate the approximate lines for the
dielectric constant and loss tangent. Note also that we turn to the causality con-
straint primarily to help in the measurement procedure; this constraint allows us to
deduce the loss tangent from the change of capacitance versus frequency. As it was
stated in Chapter 1, strictly speaking causality is less of a concern in PDN character-
ization, as we usually do not need the wave shape of the noise to be very accurate.

Though (4.58) provides a causal solution, we very rarely need laminate charac-
terizations over such a wide frequency range that we would actually enter the fre-
quency range below ω1 and above ω2. We can further simplify (4.58) by realizing
that in the frequency range of interest the slopes of the ′ε and tan_δ curves have the
same magnitude but opposite signs: based on the above model, the capacitance
always decreases with increasing frequency while the loss tangent always increases.
By selecting an arbitrary working frequency of fw somewhere conveniently within
the range of linear slope (see Figure 4.43), the real part of permittivity and the loss
tangent can be expressed by the value and first derivative of ε′:
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Equations (4.59) and (4.60) help us to characterize the laminates primarily by
measuring the capacitance versus frequency curve in a frequency range where the
data has the lowest noise, permitting a straightforward fit to the Debye model.
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4.5.5.3 AC Plane Resistance and Inductance

As dielectric constant and loss tangent are linked by the causality constraint, the
same causality constraint also applies to the series branch of the transmission-line
equivalent circuit: resistance and inductance. The resistance starts with the Rdc value
at dc, then it gradually moves toward the resistance dictated by the high-frequency
sheet resistance determined by the skin depth (4.8). Inductance is easier to follow
from high frequencies going toward low frequencies. At very high frequencies, the
current flows in thin layers on the facing surfaces of the planes; this results in the
external inductance. In case of plane pairs, it is also called interplane inductance (in
H/square):

L hr∞ = µ µ0 (4.61)

As frequency decreases, the current penetrates the planes more deeply; also as
the skin depth increases, so does the inductance. The portion of inductance that
comes from the current loop inside the planes is called internal inductance. The
finite current penetration in the planes results in a complex surface impedance with
frequency independent 45° of phase angle [27]. Using the definitions shown in
Figure 4.1, the complex surface impedance is the sum of the surface impedances of
the upper and lower planes:
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 (4.62)

If the upper and lower planes are identical in thickness and conductivity, the
two terms of (4.62) can be combined.

The series plane impedance can be expressed as the sum of the dc resistance,
complex surface impedance, and the reactance of external interplane inductance:

( ) ( )Z R Z j Ls dc surfaceω ω ω= + + ∞ (4.63)
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The complex surface impedance of planes given by (4.63) assumes smooth plane
surfaces. Realistic plane surfaces are never ideally smooth. As the skin depth
becomes comparable to and smaller than the surface roughness with increasing fre-
quency, the surface impedance will increase. There is a widely quoted empirical for-
mula (originally from microwave trace measurements and simulations) describing
the approximate rise of surface impedance. The scalar multiplier, Ksr, is:
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π δ ω
= +























1

2
14

2

arctan .
∆

(4.64)

where ∆ is the rms surface roughness and δ(ω) is the skin depth in the same, but arbi-
trary units.

With (4.64), (4.63) becomes:

( ) ( ) ( )Z R K Z j Ls dc sr surfaceω ω ω ω= + + ∞ (4.65)

4.5.5.4 Resonator Quality Factor

One of the challenges in accurately characterizing plane pairs is that there are several
interrelated unknowns. Unless we use trusted and proven models to fit the measured
data, there is no direct way to measure the parameters one-by-one. As it was shown
in Section 4.5.5.2, we can measure the static plane capacitance at frequencies much
lower than the first modal resonance, but to obtain the plane separation from (4.51),
we need the dielectric constant at the modal resonance frequency. We can measure
the dc resistance of a plane; however, its high-frequency losses eventually depend
not only on the plane thickness, but also on the conductivity and surface roughness.
Another means of cross-correlating data is to measure the quality factor, Q, of the
modal resonances and then equate it to the quality factor calculated from the
assumed loss contributors. For microwave resonators, Q is expressed in terms of the
quality factors resulting from conductive losses, Qc, dielectric losses, Qd, and radia-
tion losses, Qr [28]:

1 1 1 1
Q Q Q Qc d r

= + + (4.66)

The quality factors due to conductive and dielectric losses are directly related to
the complex surface impedance and loss tangent, respectively:

( )Q f Zc surface= (4.67)

Qd = 1
tan_ δ

(4.68)

For plane pairs, where the plane separation is much smaller than the wx and wy

horizontal dimensions, the Qr radiation loss can be neglected.
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4.5.5.5 Measurement-Model Correlations

Dedicated methods and setups exist to measure and characterize conductive and
dielectric materials for PCBs as accurately as possible. Many of these methods rely
on the measurement of a combination of conductive and dielectric layers, such that
the static capacitance and the resonance pattern of the cavity can be measured [29].
There are several measurement methods recommended by IPC; two widely used
options are the stripline method [30] and the full-sheet resonance method [31]. A
good practical overview of available options can be found in [32].

In simple and unsophisticated setups, our best means of achieving the highest
accuracy is to eliminate unnecessary variables as much as possible. When we mea-
sure dielectric materials, the uncertainty due to conductor parameters can be greatly
reduced by preparing a dielectric sample and adding the necessary conductive layers
as parts of the measurement fixture as electrodes. In this way the electrodes can be
prepared and characterized more accurately and carefully. Similarly, when measur-
ing the parameters of conductive layers, eliminating the insulating material helps to
reduce uncertainties. While these characterizations are possible, they do not repre-
sent the final construction of the PCB. In a real PCB, the building block is a
plane-dielectric-plane sandwich, as shown in Figure 4.1. This comes from a core or
is the result of a prepreg facing the planes on the cores above and below or is the
result of a layer-by-layer buildup process.

To characterize a basic two-sided laminate, we can start with a rectangular
shape either as a stand-alone three-layer structure or as part of a finished PCB or
package. By measuring the dc resistance and the impedance profiles with open
boundaries and with shorts, we can fit the model of our choice to the measured
data. The geometric parameters can be measured either by simple visual inspection
or after cross-sectioning to yield the dielectric and plane thicknesses, as well as
surface-roughness numbers.

As we show in the first characterization and correlation example, in a limited
frequency range, sufficient correlation can be achieved, even with mostly frequency-
independent models. Figure 4.44 shows the photo of a 20-layer test board with wx =
25.4-cm (10-inch) and wy = 12.7-cm (5-inch) dimensions. The test board had five
plane pairs with 50-µm (2-mil) laminate separation (see Figure 4.45), arranged into
two groups: the upper two thin laminate pairs are connected by the test vias; the
bottom three laminate pairs were unconnected. The first plane pair was 75 µm (3
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Figure 4.44 Rectangular multilayer test board for laminate and capacitor characterizations. The
board size is wx = 25.4 cm (10 inches) and wy = 12.7 cm (5 inches). The board is shown with one
bulk capacitor attached.



mils) below the surface. There were two sets of vias, both on a 2.54-cm (1-inch) grid,
with a 1.27-cm (0.5-inch) offset with respect to each other. One set of vias were
through holes for probing purposes, connecting to the planes on layers 2 and 3. The
second grid of vias was groups of blind vias connecting the same planes to surface
pads for eight-terminal capacitors.

The board was measured at various test points with nothing attached to it
(bare), as well as with shorts attached in different combinations to the capacitor
sites. First, the dielectric constant and plane separations were calculated from the
average of static capacitances and first modal resonances measured at three different
locations. Based on (4.51) this resulted in h1 = h2 = 52.3 µm (2.06 mils) and εr = 4.22.
A uniform SPICE grid with a 6.35-mm (0.25-inch) cell size was created to simulate
the planes where the dielectric constant, loss tangent, and plane inductance were
assumed to be frequency independent. Second, the resistance and inductance of the
individual shorts (vias, pads, and shorting bar) were obtained by fitting the
unknown parameters to measured data. It was found that 0.5-mΩ dc resistance,
1.6E−7 Ω/ f skin resistance and 47-pH inductance gave good agreement for all mea-

sured locations. The attached impedance of the shorted structure thus was (in
ohms):

Z f j fattached = + +− − −5 16 2 474 7 12E E E. * *π (4.69)

Finally, the measured and simulated impedance profiles were compared for vari-
ous self- and transfer-impedance combinations for the bare and shorted cases.
Figures 4.46 and 4.47 show the degree of correlation for the bare and shorted cases,
respectively.

The process outlined above is convenient to obtain the approximate laminate
characteristics in real-life stackups and board constructions. The test via pairs dis-
persed evenly over the board provide a convenient way to measure the laminate
characteristics at various locations. However, the test-via pairs require small cutouts
(i.e., antipads) around via barrels. These cutouts change the plane parameters: by
reducing the static capacitance and slightly distorting the resonance pattern.
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Figure 4.45 (a) Stackup and connections in the test board of Figure 4.44. (b) Connection points
for the bare-board correlations shown in Figure 4.46. (c) Connection points for the shorted corre-
lations shown in Figure 4.47.



The same test-board construction was used to compare various laminates, as
reported in [33]. Figures 4.48 and 4.49 show the frequency-dependent capacitance
and inductance of various laminates, all of which were tested in the same nominal
board construction. Table 4.1 summarizes the major parameters of the laminates
and decodes the labels. The dielectric thickness and copper thickness values are
nominal; they were not checked by cross-sectioning. The column of relative dielec-
tric constant, εr, shows the measured values on the test boards at 1 MHz. The dielec-
tric loss, tan_δ column gives the measured value calculated from the rate of
capacitance change with (4.59) and (4.60).

The data in Figure 4.48 is normalized to the low-frequency capacitance value of
each board, and thus the impact of dielectric thickness and dielectric constant differ-
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Figure 4.46 Simulated and measured impedance magnitudes at two different locations on the
test board. (a) Self-impedance at location A. (b) Transfer impedance between B and C.
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Figure 4.47 (a) Measured self-impedance plots at various locations of shorts as identified on Fig-
ure 4.45(c). Measurement point is D for all three traces. (b) Correlation between measurement
and simulation for trace E.



ences is removed. All six unfilled polyimide laminates (1–6) exhibit approximately,
−0.3%/decade capacitance drop. The two glass-reinforced laminates (7 and 8) show
−3.2%/decade capacitance change. The highest rate of capacitance drop comes from
laminates 9, 10, and 12.

The inductance values in Figure 4.49 were measured on the same test boards
when all capacitor sites around the board periphery were shorted. There are three
major phenomena we can observe on the inductance data. The first obvious trend is
that the high-frequency inductance is proportional to the nominal dielectric thick-
ness. The second trend is that the saturated inductance at low frequencies is propor-
tional to the average thickness of the dielectric and copper. The third trend is the
drop of inductance with increasing frequency as the current penetration inside the
planes is reduced by the skin effect.
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Figure 4.48 Percentage change of capacitance of boards with laminates from Table 4.1, mea-
sured in bare boards of construction, as shown in Figures 4.44 and 4.45.
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construction, as shown in Figures 4.44 and 4.45.



The second characterization example uses the same structure that was shown in
Chapter 2, Figure 2.1. The sample piece of a nominal size of wx = 5.08 cm (2 inches)
and wy = 2.54 cm (1 inch) was manually cut out from a multilayer board; this cut is
similar to the one shown in the previous example, except for the fact that the outer-
most plane pair was connected to the test-via pair. The laminate thickness was nom-
inally 50 µm (2 mils). The cut was made in such a way that the test vias were located
in the middle; this was the only point on the planes where self-impedance was mea-
sured. The measuring instrument was an Agilent N5230, with a logarithmic sweep
in the 1-MHz–10-GHz frequency range. We use this example to show in more detail
how to extract the frequency-dependent εr and tan_δ. Figure 4.50 shows the mea-
sured self-impedance magnitude and phase. The same data is shown on both charts:
(a) shows the full-span impedance and (b) shows the zoomed impedance profile
around the first modal resonance.

The size of the sample was remeasured more accurately; it was found that the
longer dimension was wx = 5.22 cm (2.05 inches). From the impedance data shown
in Figure 4.50(b), the first modal resonance frequency was extracted as fres = 2.9768
GHz. From this resonance frequency, (4.50b) yields a relative dielectric constant of
3.7254. To get the plane separation from (4.50a) and to allow for frequency-
dependent parameters, we need the measured capacitance and the extracted dielec-
tric constant at the same frequency. To do this, we extract the capacitance versus
frequency curve at frequencies below the first impedance minimum, fit a causal
multipole Debye model on the extracted capacitance, and then, from the model, we
extrapolate the dielectric constant at fres. The extracted capacitance versus fre-
quency and the dielectric constant, as well as the loss tangent from the Debye
model, are shown in Figure 4.51.
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Table 4.1 Summary of Parameters of Laminates Shown in Figures 4.48 and 4.49

Dielectric
Thickness
[mm]

r at
1 MHz [-]

tan_ at
1 MHz [-] Dielectric Type

Copper
Thickness
[mm]

Copper
Type Reference

1 25 3.15 0.002 unreinforced, unfilled 36 ED HK042536E

2 25 3.17 0.0024 unreinforced, unfilled 36 RA HK042536R

3 25 3.13 0.0019 unreinforced, unfilled 72 RA HK042572R

4 50 3.14 0.0021 unreinforced, unfilled 36 RA HK045036R

5 50 3.15 0.0021 unreinforced, unfilled 72 RA HK045072R

6 50 14.7 0.0032 unreinforced, filled 36 RA HK1014

7 50 3.4 0.022 reinforced, unfilled 36 ED ZBC2000

8 25 3.7 0.022 reinforced, unfilled 36 ED ZBC1000

9 24 4.4 0.033 unreinforced, unfilled 36 RA BC24

10 16 4.0 0.031 unreinforced, unfilled 36 RA BC16

11 12 3.8 0.02 unreinforced, unfilled 36 RA BC12

12 24 16.8 0.031 unreinforced, filled 36 ED C-Ply24

13 12 14.2 0.024 unreinforced, filled 36 ED C-Ply12

14 8 13.1 0.023 unreinforced, filled 36 ED C-Ply8



The capacitance versus frequency plot on Figure 4.51(a) uses (5.28) and
accounts for the plane inductance. Figure 4.51(b) shows both the measured capaci-
tance and the straight line best-fit approximation of the Debye model. With the
straight-line approximation of capacitance on the logarithmic frequency scale, we
can extrapolate the capacitance out to fres: the result is C(fres) = 825.8 pF. Using the
above C(fres) estimate, (4.50a) yields h = 59.8 µm (2.35 mils) for the laminate thick-
ness. Finally, the sample was cross sectioned, and the laminate thickness, upper and
lower plane thicknesses and surface-roughness values were extracted, as illustrated
in Figure 4.52.

The correlation between the measurement and simulation results was shown in
Chapter 2.

The third and final characterization example uses a bare sheet of two-sided com-
posite laminate, a DuPont Pyralux LF911R, which was probed at the edges with
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Figure 4.50 Self-impedance (a) magnitude and (b) phase of the 50-µm laminate sample.
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Figure 4.51 (a) Capacitance versus frequency and (b) capacitance and loss tangent from the
Debye model for the 50-µm laminate.



250-µm wafer probes. The nominal dimensions and probe connections are shown
in Figure 4.53.

Measurements were carried out with two separate VNAs. The 100-kHz–
1,800-MHz range was measured with a logarithmic sweep with an Agilent 4396A
VNA with the 85046 S-parameter test kit. The 1–10-GHz frequency range was
measured with linear sweep with an Agilent N5230 VNA. For both VNAs, calibra-
tion was done to the tips of the probes with a GGB Industries CS-14 calibration
substrate.

The square sample was measured in three configurations: self-impedance at the
corner (A), self-impedance in the middle of a side (B), and transfer impedance
between the corner and middle of a side (see Figure 4.53). Figures 4.54 and 4.55
plot the measured self- and transfer impedances. Note that in the frequency range of
1.0–1.8 GHz there are two measured traces originated from two different instru-
ments. The independent datasets run on top of each other; this indicates that the
data is of good quality.

4.5 Characterization of Plane and Laminate Parameters 117

(a) (b)

Figure 4.52 Cross-section (a) and surface-roughness measurement (b) on the 50-µm laminate.
Cross-section and photo courtesy of Sanmina-SCI.

wx

wy

h

A B

Figure 4.53 Bare laminate characterization. The sample size was wx = wy = 6.35 cm (2.5 inches)
with a nominal dielectric thickness of h = 75 µm (3 mils).



The capacitance versus frequency curves were extracted from the measured
impedance for all three cases. The capacitance measured at (B) is shown on Figure
4.56(a). Capacitance is shown as a function of the logarithm of frequency. The lin-
ear best-fit approximation over the highlighted 300 kHz–15 MHz is also shown on
the chart. Figure 4.56(b) shows the dielectric constant and loss tangent independ-
ently extracted from the three datasets. The relative dielectric constant curves run on
top of each other. The loss tangent curves are also close, but have a slight separation.

The first modal resonance frequency is fres = 1.3144 GHz, the calculated lami-
nate thickness is h = 78.8 µm (3.1 mils). The quality factor at the first modal reso-
nance at location (B) is Q = 26.8. The calculated Q from the loss tangent and surface
impedance is Q = 21.5.

The cross section of the laminate is shown in Figure 4.57. Figure 4.57(a) shows
the entire two-sided laminate: the light strips on the top and bottom are the rolled
anneal copper foils; the dark strip in the middle is the dielectric layer. By graphical
postprocessing the photo can be enhanced to show the three layers of dielectrics: the
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Figure 4.54 Self- and transfer impedance magnitudes measured on the sample shown in Figure
4.53.
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Figure 4.55 Self- and transfer impedance magnitudes measured on the sample shown in Figure
4.53. Zoomed horizontal scale.



polyimide layer in the middle and the two C-staged modified acrylic layers above
and below. This is shown in Figure 4.57(b). The measured dielectric thickness is
73.9 µm, and from (4.50a) we get 77.2 µm, which agree within less than 5%. The
surface roughness was measured at four different locations on the inner surfaces of
the upper and lower planes; the root-mean-square surface roughness varied
between 0.56 µm and 1.19 µm. Reference [34] is useful for analyzing multilayer
structures.

Note that measuring the laminate parameters as shown above yields the average
electrical properties of the three stacked dielectric layers.

To close the correlation loop, full-wave field-solver simulations were performed
with the plane separation and dielectric parameters extracted from the measured
impedance data. The frequency-dependent dielectric constant and loss tangent were
entered into the tool. A surface impedance approximation was used to capture the
frequency dependence of the inductance and resistance. The probes were modeled
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Figure 4.56 (a) Extracted and modeled capacitance from data at location (B). (b) Multipole
Debye dielectric constant and loss tangent models from all three measured locations. Horizontal
scale is the logarithm of frequency. There is no difference among the three dielectric constant (εr)
curves; the top loss tangent (tan_δ) curve is from location (B); the middle trace is extracted from
the transfer impedance; the bottom trace was extracted from data measured at location (A).
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Figure 4.57 (a, b) Cross-section of the 75-µm laminate. (Laminate is courtesy of DuPont, cross
section photo courtesy of Sanmina-SCI.)



with 75 × 75 µm lumped ports, and the self-impedance at location (A) and the trans-
fer impedance between locations (A) and (B) were simulated in the 0.1–10-GHz fre-
quency range. The correlation is shown in Figure 4.58.
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