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INTRODUCTION (1/2)
• Validation of PDN is becoming more critical

• Tighter budgets
• More supply rails with more interaction

• Validation can be better done in the frequency 
domain

• Supply voltages keep dropping
• Target impedance goes down

• There are multiple challenges in measuring low 
impedances
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INTRODUCTION (2/2)
Challenges in low-impedance measurements
• Except measuring components in fixtures, PDN 

measurements require cables to reach DUT
• Discontinuities of cable connections to DUT beyond 

the calibration plane introduce big errors
• Discontinuity error can be reduced by Shunt-through 

Two-port connection, but it creates a ground loop
• Some PDN components are sensitive to not only DC 

bias, but also AC bias so that the instrumentation’s 
test signal may alter the result
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THE CABLE-BRAID LOOP ERROR (1)

The problem:
 

In 1-Port schemes the 
discontinuity of connection 
overwhelms the low DUT 

impedance
In Two-port Shunt-through schemes 
the effect of discontinuity is largely 
removed but the two cable braids 

create a loop.
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THE CABLE-BRAID LOOP ERROR (2)

The Is test current returning on the braids lifts the lower side of 
the DUT.  Instead of the DUT, we measure the cable braid 

resistance.
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REDUCING THE CABLE-BRAID LOOP 
ERROR

The receivers are floated on Zg1 and Zg2, which attenuates the 
error by a factor of ~Zg/Zb

 

VTVT

VRVR

VT~Vo
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Source AC current

Zg2

External
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Port T Port R
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REDUCING THE CABLE-BRAID LOOP 
ERROR
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S21 and |Z| measurement results with 
S-parameter test port of E5061B-3L5

(a) Without core 
(b) A clamp-on-type core is attached to test cable. 
(c) A large toroidal core is attached to test cable.
(d) Test cable is turned three times around a large toroidal core.

S21 and |Z| measurement results with 
gain-phase test port of E5061B-3L5

Without core or isolation transformer
Source=10 dBm (-5 dBm at thru cal)
Port-T: ATT=0 dB, Zin=50 ohm, Port-R: ATT=20 dB, Zin=50 ohm
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CALIBRATION
Open:

Short:

Load:
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HOME-MADE CALIBRATION AND 
REFERENCE PIECES

Open: Short: Load:

 Impedance magnitude [Ohm]
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ERROR IN TILE-STYLE REFERENCE PIECE
 Impedance magnitude and phase [Ohm, degree]
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MODIFIED SHUNT-THRU METHOD FOR 
MEASUREMENT WITH DC BIAS & 
CONSTANT AC

VR

Ri

50

+
VT Zdut DC bias 

source

Zdut = 25 x S21 / (1-S21)

50

50

50

50

50
VT VR

Conventional shunt-thru method 
with 50 ohm inputs

Open Short Load

50 ohm

• Hi-Z receivers can receive DC bias up to 40 Vdc.
• VT monitors AC voltage across DUT (=Vdut).
• Need 3-term cal in Z-domain.

Zdut

Shunt-thru method with 
High-Z inputs

Calibration

Vdut
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MEASUREMENT CONFIGURATION 
WITH E5061B GAIN-PHASE TEST PORT

T: Zin=1 Mohm
R: Zin=1 Mohm

Ri=50 to 100 ohm

Or use power splitter

T-connector

50

Open Short Load

Ri

RT

Zin

ATT
R1

T1

R2

T2

R

Zin

ATT

T

S-param. test port

DC bias 
source

E5061B-3L5 

Calibration

LF OUT

Gain-phase test port

AC+DC

Port-1 Port-2

DUT
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EVALUATING BYPASS CAPACITORS 
WITH DC VOLTAGE BIAS

MLCC (Multi-layer Ceramic Capacitor) measurement 
with DC bias

Test freq: 100 Hz to 10 MHz
AC level: 10 dBm fixed source setting
DC bias: 0 to 5 Vdc
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EVALUATING BYPASS CAPACITORS 
WITH CONSTANT AC SIGNAL LEVEL (1)

VT monitors Vdut as 
20*Log(Vdut^2/50)

::

-20 dBm

-20 dBm
-20 dBm

Initial 
source setting

Freq-2

Freq-N

Freq-1

:

-40 dBm

-24 dBm
-23 dBm

AC level 
across DUT

:

(-20 + 10) dBm

(-20 + 4) dBm
(-20 + 3) dBm

Next 
source 
setting

a) Set source level
to target level.

b) Measure Vdut. c) Change 
source level.

Trig Trig
Repeat steps b and c
a few times. (… And then 
perform measurement.)

Ri=10 to 50 ohm
T-connector

Ri

VR

Ri (=50 to 100 ohm)

50

+
VT

Zdut DC bias 
sourceVdut

Pre-measurement for making constant-AC sweep table
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EVALUATING BYPASS CAPACITORS 
WITH CONSTANT AC SIGNAL LEVEL (2)

(b) Applying constant AC (5 mVrms at DUT)

20 Log(|Z|)  (dB)

|Z| (ohm)

Capacitance (F)

AC level across DUT
( =20*Log (Vdut^2/50) )

5 mVrms is constantly 
applied to DUT 
in this freq range.

AC level applied to 
DUT is not constant.

(a) Source level = 10 dBm fixed 

Constant-AC sweep 
table created by 
pre-measurement

201 segments
100 Hz to 10 MHz.
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EVALUATING BYPASS CAPACITORS 
WITH CONSTANT AC LEVEL AND DC BIAS

MLCC measurement with constant AC level and DC bias
Test freq: 100 Hz to 10 MHz
AC level: 5 mVrms constant at DUT
DC bias: 0 to 5 Vdc

With fixed source setting…

Improvement with constant AC
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APPLYING HIGHER CONSTANT AC LEVEL

Ri=100 ohm / 2 W
(high-power resistor)

Input Output
Gain = x10 (=20 dB)

10:1 passive probe

10 mVrms is constantly 
applied to DUT 
in this freq range.

Capacitance (F)

AC voltage across DUT
( =20*Log(Vdut^2/50) )

Coax
cable

Coax
cable

4-quadrature amplifier
(NF HSA4101, DC to 10 MHz

Zin=50 ohm, Zout=1.5 ohm + 0.5 uH )

T: Zin=1 Mohm
R: Zin=1 Mohm
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EVALUATING INDUCTORS WITH 
DC BIAS CURRENT (1)

16200B DC bias adapter

DC 
current 16192A SMD test fixture Bias=0 A

0.5 A
1 A 2 A|Z| (ohm)

100 ohm

160 ohm

1-port reflection method with bias tee (Test freq: 1 MHz to 1 GHz, DC bias: up to 5 Adc)

Ferrite bead measurement
Test freq: 1 MHz to 1 GHz
DC bias: 0 to 2 Adc

Open/Short/Load cal 
at fixture

Short 
chip

50 ohm
chip
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EVALUATING INDUCTORS WITH 
DC BIAS CURRENT (2)

Ydut

DUT

S11 S21 S22
To 
E5061B
port-1

To E5061B 
port-2

Y1 Y2

DC 
block

Bypass-C

DC current
source

Choke
coil-1

DC 
current Choke

coil-2

S12

2-port full cal

1 uH power inductor
measurement

PI-network method (Test freq: 1 MHz to 100 MHz, DC bias: up to >30 Adc)

Zdut=1/Ydut=50((1+S11)(1+S22)-S12S21)/(2S21)
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DC-DC CONVERTER MEASUREMENTS (1)

 

Cout

L
CinCin

R1

Error Amp.
+- PWM

Vref

R3

R2

R4

C1

C2

C3

Load

Power
supply

DC-DC 
converter 
under test

VoutVin

R5
50 ohm

T1

TP1

TP2 LF OUT
R

E5061B with option 3L5

R

T

Connect to 
chassis GND
(optional)

Port-T: Zin=1 Mohm
Port-R: Zin=1 Mohm

T
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DC-DC CONVERTER MEASUREMENTS (2)
 Loop gain and phase [dB, deg]

-20

-10

0

10

20

30

40

50

1.0E+03 1.0E+04 1.0E+05
Frequency [Hz]

-180

-135

-90

-45

0

45

90

135

180

3120 FRA
E5061B
3120 FRA
E5061B

Gain

Phase
Loop stability measurement of a 

Linear Technology LTM4617 
evaluation module
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DC-DC CONVERTER MEASUREMENTS (3)
 Loop gain [dB]
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DC-DC CONVERTER MEASUREMENTS (4)

 Impedance magnitude [Ohm]
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Output impedance magnitude (on the left) and phase (on the right) of a 
15-A 1V DC-DC converter 
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SYSTEM-LEVEL MEASUREMENTS

 Impedance magnitude [Ohm]
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SUMMARY
• Semi-floating ground reference greatly reduces cable-braid error

• MLCCs may exhibit dependence on AC bias as well

• Scripts can help to keep AC level across DUT at user-defined levels

• Gain-phase test port can measure both loop margin and output 
impedance of DC-DC converters
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