DESIGNCON[®] 2015

Jae Young Choi and Istvan Novak, Oracle Corporation

Simulating and Measuring Microohms in PDNs

UBM

Speaker

Jae Young Choi

is a Senior Hardware Engineer at Oracle America Inc. He is engaged in the design and characterization of high-speed signal interconnects and power distribution networks for high-performance server systems. He received his Ph.D. in Electrical and Computer Engineering from the Georgia Institute of Technology.

Istvan Novak

is a Senior Principal Engineer at Oracle. Besides signal integrity design of high-speed serial and parallel buses, he is engaged in the design and characterization of power-distribution networks and packages for mid-range servers. He creates simulation models, and develops measurement techniques for power distribution. Istvan has twenty plus years of experience with high-speed digital, RF, and analog circuit and system design. He is a Fellow of IEEE for his contributions to signal-integrity and RF measurement and simulation methodologies.

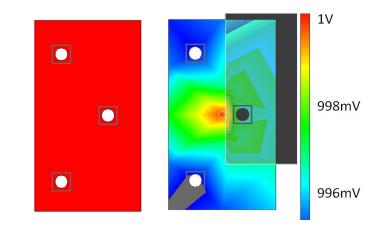
Agenda

- Introduction
- DUT, Simulation & Measurement Setup
- DC Simulations/Measurements
- AC Simulations/Measurements
 - DUT-VRM & DUT-CAP: Shorts at DC-DC converters & capacitor pads
 - DUT with capacitors
- Conclusions

Agenda

• Introduction

- DUT, Simulation & Measurement Setup
- DC Simulations/Measurements
- AC Simulations/Measurements
 - DUT-VRM & DUT-CAP: Shorts at DC-DC converters & capacitor pads
 - DUT with capacitors
- Conclusions


Introduction

- PDN designs get more challenging
 - Dropping supply voltages
 - More interactions between power supply rails
 - Stringent target impedance
 - PDN impedance requirement can be in the sub-milliohm range
- □ Low-frequency simulations pose resource and setup challenges
- □ Measurement of extremely low impedance is vulnerable to multiple factors
 - Ground loop error
 - Noise floor
 - Measurement discontinuities

Potential Issues with DC Drop Simulation

Large pads for high-current devices

- Attached device may force equipotential surface
- In extreme case, if simulation does not enforce equipotential surface, voltage drop can be as high as 5mV across a typical DC-DC converter pad
- Assuming equipotential pad will result in slightly optimistic impedance
- Hundreds of sources/loads with equipotential device assumption may lead up to 50% miscalculation of DC drop in large dense memory arrays

Simulated current distribution with (left) and without (right) equipotential pad option

DESIGNCON[®] 2015

#DC15

Potential Issue with AC Simulation

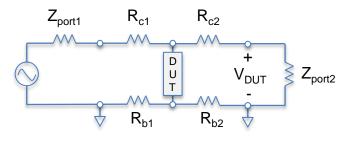
□ Simulating at low frequencies

- Inter-plane coupling effect (skin-depth)
- Full-wave solutions are challenged at low frequencies
- AC simulations may show poor correlation for very low impedances
- □ Can be improved by fitting to DC simulation result

6.00E-03 5.00E-03 ~100% 4.00F-03 difference 3.00E-03 2.00E-03 1.00E-03 Δ 0.00E+00 Ρ1 P2 Ρ3 Ρ4 P5 ▲ AC Simulation DC Simulation

△ AC Measurement □ DC Measurement

AC data are at 100 Hz (DUT impedance is flat from DC up to 10 kHz)



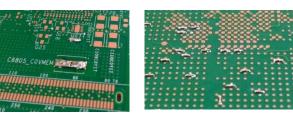
Potential Issues with Measurement

Measurement method

- Network analyzer
- □ 1-port vs. 2-port measurement
 - Error: Z_{connection}/Z_{DUT} >> Z_{connection}/Z_{VNA}
 - Receive-only port provides much lower noise floor
- Ground loop error caused by test cable shield resistance
 - Finite resistance of the cable shield creates a common-mode error

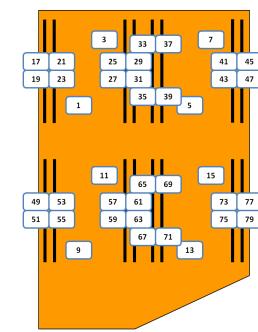
- □ Solutions:
 - Increase shield inductance with large toroid core
 - Differential amplifier

 $R_{error} = R_{b1} \parallel R_{b2}$


- Introduction
- DUT, Simulation & Measurement Setup
- DC Simulations/Measurements
- AC Simulations/Measurements
 - DUT-VRM & DUT-CAP: Shorts at DC-DC converters & capacitor pads

Q

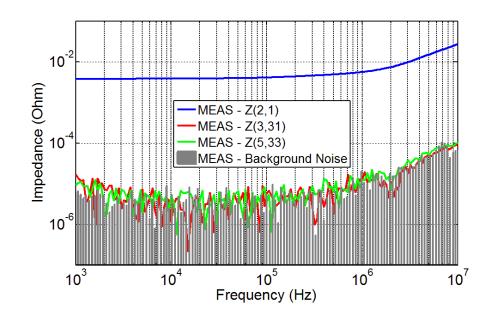
- DUT with capacitors
- Conclusions


DUT with Low Impedance

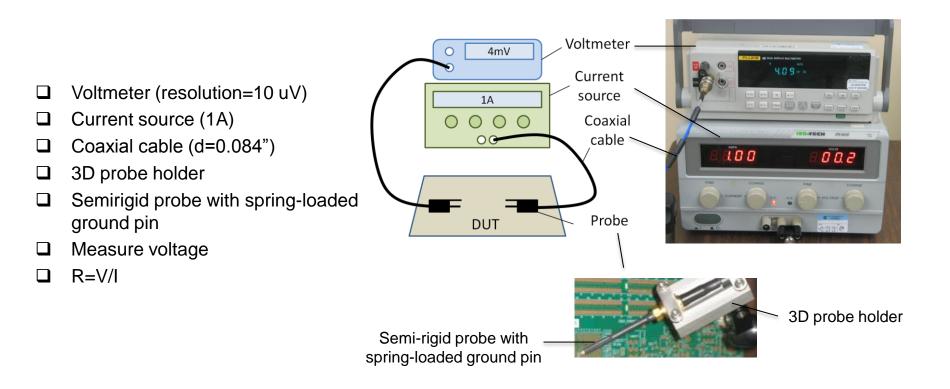
- Large bare PCB with 4 power layers
- 80 ports on 8 memory controllers and 16 DIMM sockets
- Port(N) and Port(N+1) are in close proximity
 - Hence, Z(N,N+1)≈Z(N,N)≈ Z(N+1,N+1)
- DUT-CAP: shorted all capacitor pads (DC-DC converter pads open)
- DUT-VRM: shorted DC-DC converter pads (capacitor pads open)

Memory sockets 20" Multi-phase DC-**DC** converters 16"

∠ Power plane shape


Shorted capacitor pads

Approximate dimensions and placements of memory controllers and DIMM sockets Port numbering definition

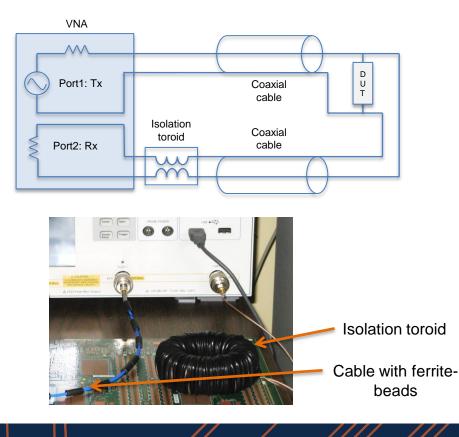


Measurement Noise Floor

- Noise floor is obtained by measuring on the opposite sides of a solid metal sheet using the same measurement setup, cables, and probes
- Some very low measured transfer impedances are masked by the measurement noise floor
- With the given setup, below 1 MHz, the noise floor is around 10 microohms.

Measurement Setup - DC

Design**Co**


Measurement Setup - AC

3

- □ VNA (100Hz ~ 100MHz)
- □ Two-port shunt thru setup
- □ 0 dBm power
- Isolation toroid
- □ Ferrite-bead capped coaxial cables
- □ 3D probe holder
- □ Semi-rigid probe with spring-loaded ground pin
- □ SOLT calibration

DESIGNLA

Cable with ferrite-beads & isolation transformer to reduce cable-braid error

Simulation Setup

- Commercial hybrid solver
- Extracts frequency-dependent network parameters (S-parameter)
- □ Import layout file
- Define port locations
- □ Frequency setup
 - 100Hz-100MHz, logarithmic step
- Modeling of shorts
 - Series R-L (R=1mOhm, L=1nH)

- Detailed Setup Matters
 - Stack-up (updated with cross-section data)
 - Material properties (metal conductivity, dielectric constant & loss, via conductivity)
 - Extracted via dimensions (diameter, plating thickness)
 - DC solver option (engages DC-dedicated solver to calculate DC and low frequency points)
 - Void size to be neglected in the simulation (<60mil)
 - Natural boundary condition considering radiation
 - Inter-plane coupling (neglected)

Cross-Section Data

- Two DUTs were cross-sectioned after completing measurements
- □ Actual thickness of each metal/dielectric layer
- □ Via diameter/plating statistics
- Created three simulation corner cases representing best/typical/worst impedance profiles

Via diameter: 11.8 ~ 12.3mil
Plating thickness: 1.1 ~ 1.6mil

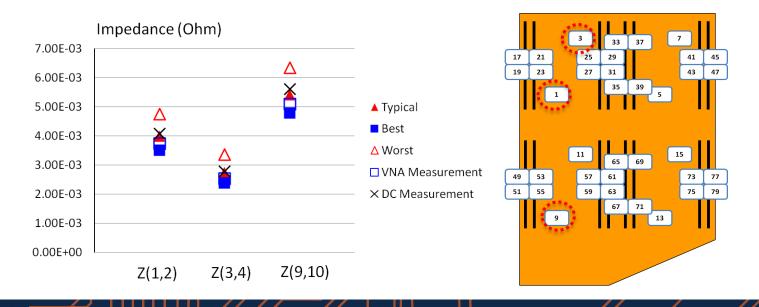
			(Om. nm)
Layer	Layout	Board 1	Board 2
Power1	1.20	1.24	1.23
	4.24	4.01	4.04
Power2	1.20	1.24	1.24
	1.00	0.97	0.96
Power3	1.20	1.23	1.23
	4.24	4.11	4.13
Power4	1.20	1.23	1.22
	1.00	0.96	0.96

(Unit: mil)

		Best	Typical	Worst
Cc	opper	Thickest	Median	Thinnest
	DE	Thinnest	Median	Thickest
Via d	iameter	Largest	Median	Smallest
Via plating		Thickest	Median	Thinnest
	opper ductivit y	No Derating	Derated 10%	Derated 20%
Short Wire	ESR	0	1mOhm	3mOhm
ort	ESL	0	1n~3nH	3nH

Agenda

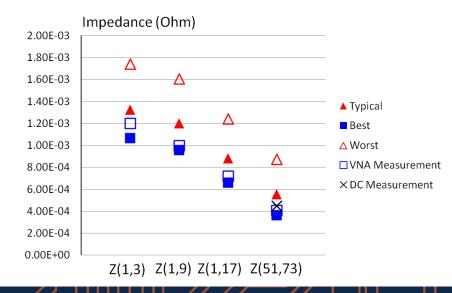
- Introduction
- DUT, Simulation & Measurement Setup
- DC Simulations/Measurements
- AC Simulations/Measurements
 - DUT-VRM & DUT-CAP: Shorts at DC-DC converters & capacitor pads

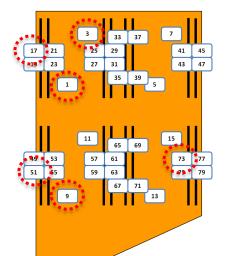

- DUT with capacitors
- Conclusions

DUT-VRM: DC Correlation

□ Self-impedance results

HEAH

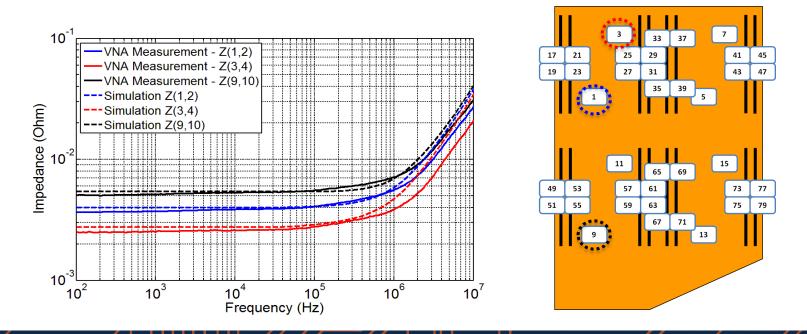

- □ VNA measurement point is at 100 Hz (impedance is flat from DC to 10 kHz)
- Measurement data are within simulation corner cases



DUT-VRM: DC Correlation

- □ Transfer-impedance results
- □ VNA measurement point is at 100 Hz (impedance is flat from DC to 10 kHz)
- □ Impedance is as low as ~400 microohms
- Measurement data are within simulation corner cases

IESU

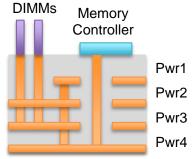

Agenda

- Introduction
- DUT, Simulation & Measurement Setup
- DC Simulations/Measurements
- AC Simulations/Measurements
 - DUT-VRM & DUT-CAP: Shorts at DC-DC converters & capacitor pads

- DUT with capacitors
- Conclusions

DUT-VRM: AC Correlation

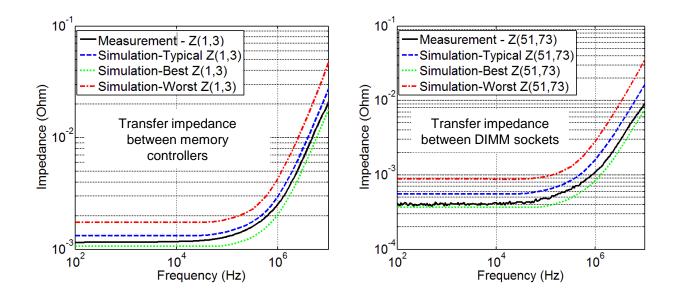
- □ Self-impedance results
- Simulation is based on the typical values of the cross-section data



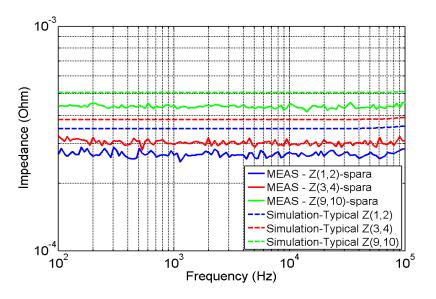
DUT-VRM: AC Correlation

21

- □ Transfer-impedance results
- Simulation is based on the typical values of the cross-section data
- **C** Electrical path: Z(51,73) > Z(1,17) > Z(1,9) > Z(1,3)



Power plane stack-up and connectivity


DUT-VRM: AC Correlation

- Best and worst cases define the minimum and maximum impedance boundaries caused by manufacturing variations
- Measurement results stay within the simulation corner cases along the frequency range

DUT-CAP: AC Correlation

- Shorting over five hundred of capacitor pads dramatically lowers the DUT impedance
- Self-impedances are in the microohm range
- Transfer-impedances are below measurement noise floor (<~10⁻⁵; not shown)

Self-Impedance at memory controllers

Agenda

- Introduction
- DUT, Simulation & Measurement Setup
- DC Simulations/Measurements
- AC Simulations/Measurements
 - DUT-VRM & DUT-CAP: Shorts at DC-DC converters & capacitor pads

- DUT with capacitors
- Conclusions

Capacitor Models

- Measure capacitors
- Measure test fixture with shorted pads
- De-embed test fixture from capacitor

$$Z_{de-embedded}(2,1) = Z_{capacitor}(2,1) - Z_{testfixture}(2,1)$$

Test fixture for ceramic capacitor

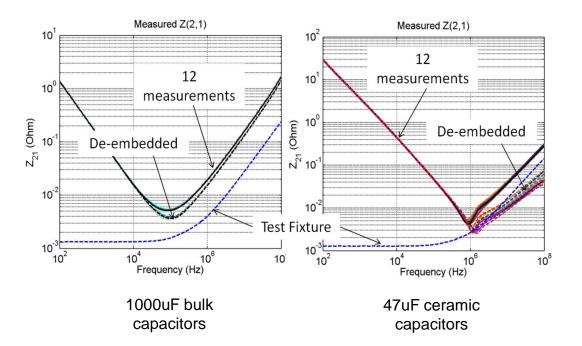
 $\Box \quad \text{Conversion of } S(2,1) \text{ to } Z(2,1)$

$$Z(2,1) = \frac{Z_{VNA}}{2} \frac{S(2,1)}{1 - S(2,1)}$$

Conversion of 2-port to 1-port model

$$S(1,1) = \frac{Z(2,1) - Z_0}{Z(2,1) + Z_0}$$

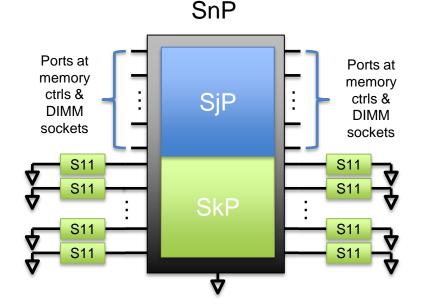
Test fixture for bulk capacitor



Capacitor Models

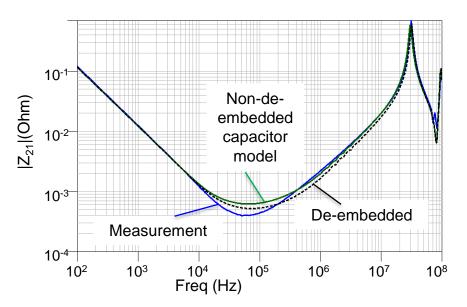
Measured samples for each typeCapacitance from the measurement

Туре	Min	Mean	Мах
1000uF	1130uF	1157uF	1194uF
47uF	52uF	54uF	56uF


□Capacitance varies within +/- 4% □ESR varies within +/- 5%

#DC15

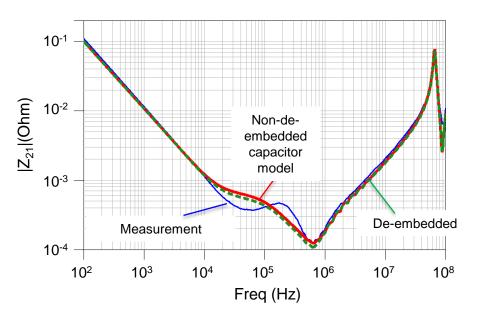
Concatenating Capacitor and PCB Models


- Create PCB model with additional ports for capacitors
 - □ Added 'b' ports at capacitor pads
 - □ 'a' ports are observation ports
 - □ n=j+k
- Concatenation
 - Commercial tool with a GUI
 - □ Manual concatenation using ABCD matrices

PCB + 1000uF Capacitors

28

- Each of 12 bulk capacitor model was concatenated at each corresponding location
- De-embedding test fixture subtracts extra components
 - Short wire/braid used for test fixture measurement (extra R, L components)
- Inconsistent soldering quality may also affect


Transfer impedance between memory sockets

DESIGNE

PCB + 1000uF + 47uF Capacitors

29

- Numbered12 bulk capacitor models were concatenated at their corresponding location
- All 40 ceramic capacitors were represented by a single model (thus, model variance neglected)
- Discrepancies may be due to one or many of the following factors
 - Capacitor model variation (measurement, solder, heat)
 - De-embedding method
 - Accuracy of AC simulation at low frequencies

Transfer impedance between memory sockets

Agenda

- Introduction
- DUT, Simulation & Measurement Setup
- DC Simulations/Measurements
- AC Simulations/Measurements
 - DUT-VRM & DUT-CAP: Shorts at DC-DC converters & capacitor pads
 - DUT with capacitors
- Conclusions

Conclusions

- Correlation of simulations and measurements in the sub-milliohm range
- Different techniques used for AC and DC simulations and measurements
- AC measurements using VNA and two-port shunt-thru concepts
- Low frequency accuracy of AC simulations can be improved by fitting to DC simulation result
- Simulation accuracy can be enhanced by PCB cross-section data

DESIGNCON[®] 2015

 \mathbf{V}

Q&A

