DESIGNCON[®] 2015

Shirin Farrahi, Vijay Kunda, Ying Li, Xun Zhang, Gustavo Blando, Istvan Novak Oracle Corp

Does skew really degrade SerDes performance?

UBM

Motivation

Resin dk= 2, df= 0.01, Glass dk= 6, df= 0

Our approach

CELEBRATING 20 YEARS

DesignCon[®] 2015

WHERE THE CHIP MEETS THE BOARD

Test setup

Test setup

SerDes driver and receiver

- Driver FIR settings fixed
- Receiver settings adaptive

Adjustable delay lines

Differential IL due to skew

Adjustable delay lines

DESIGNCON® 2015 WHERE THE CHIP MEETS THE BOARD

Channel measurements

DESIGNCON[®] 2015 WHERE THE CHIP MEETS THE BOARD

Channel measurements

Four cases: Each length at 12.8 Gbps and 19.2 Gbps

DesignCo

WHERE THE CHIP MEETS T

Channel measurements

DESIGNCON[®] 2015 WHERE THE CHIP MEETS THE BOARD

Eye measurements

19.2 Gbps, 30 cm channel

#DC15 🦯

Eye measurements

19.2 Gbps, 30 cm channel

Eye measurements

19.2 Gbps, 30 cm channel

Simulations

- IBIS-AMI model of driver and receiver
- Measurement channel models
- Custom-built Matlabbased simulator

Simulations

- IBIS-AMI model of driver and receiver
- Measurement channel models
- Custom-built Matlabbased simulator

Simulated eyes 19.2 Gbps, 30 cm channel

Measurement vs simulation trends

19.2 Gbps, 30 cm channel

AEQ saturating

19.2 Gbps, 30 cm channel

DFE operation

AEQ not saturating

19.2 Gbps, 10 cm channel

ISI due to h₋₁

19.2 Gbps

1 ps 6.5 ps 12 ps

0.2

0.15

19.2 Gbps, 10 cm channel

DesignCo

WHERE THE CHIP MEETS THE BO

2015

Simulated pulse responses

Skew vs insertion loss

DESIGNCON[®] 2015 WHERE THE CHIP MEETS THE BOARD

Skew translates to insertion loss

DESIGNCON[®] 2015 WHERE THE CHIP MEETS THE BOARD

Higher data rate: 25 Gbps

DESIGNCON 2015 WHERE THE CHIP MEETS THE BOARD

DESIGNCON® 2015 WHERE THE CHIP MEETS THE BOARD

At 19.2 Gbps, 10 cm channel, 28.5 ps skew, added XT results in **58 %** decreased margins!

DC15

Conclusions

- Significant amounts of skew can be tolerated by SerDes equalization techniques
- As a first order, skew can be treated as insertion loss
- The effects of skew are worse with XT

Acknowledgements

- Seyla Leng
- Jae Young Choi
- Eben Kunz
- Laura Kocubinski

