Overview and Comparison of Power Converter Stability Metrics

Joseph 'Abe' Hartman, Oracle Alejandro 'Alex' Miranda, Oracle Kavitha Narayandass, Oracle Alexander Nosovitski, Oracle Istvan Novak, Oracle

SPEAKERS

Joseph 'Abe'Hartman

Principle Hatrdware Engineer, Oracle abe.hartman@oracle.com | www.oracle.com

Istvan Novak

Senior Principle Hatrdware Engineer, Oracle istvan.novak@oracle.com | www.oracle.com

- Introduction
- Gain-phase plots
 - Traditional gain-phase plots
 - Gain-phase plot approximations and non-invasive measurements
- Nyquist plots and Stability margin
- Other metrics
- What can go wrong?
 - Wrong test signal level
 - Spurious signals
 - Impact of test equipment and load circuit
 - Measurement location
- Summary and Conclusions

Introduction

- Gain-phase plots
 - Traditional gain-phase plots
 - Gain-phase plot approximations and non-invasive measurements
- Nyquist plots and Stability margin
- Other metrics
- What can go wrong?
 - Wrong test signal level
 - Spurious signals
 - Impact of test equipment and load circuit
 - Measurement location
- Summary and Conclusions

Basic Buck Converter and its Loop Model

Non-isolated buck converter block schematic

Bode Plot, Phase and Gain Margins

- Crossover Frequency frequency where gain magnitude equals 0 dB
- Phase Margin phase at the crossover frequency
- Gain Margin gain where phase equals 0 degrees

Nyquist Plot

- Plots imaginary vs. real component of loop gain
- Frequency parameter
- Point of instability is -1,0

Nyquist diagram

 $\frac{\Delta V_{out}}{\Delta I_{load}} = Z_{out-closed-loop}(f) = \frac{Z_{out-open-loop}(f)}{1 + G_{open-loop}(f)}$

Increasing frequency

Characteristic Expression Magnitude and Its Inverse Characteristic expr

 Plots {1+G_{open-loop}(f)} and its inverse, the stability margin
Provides the vector magnitude
from the instability point

- Introduction
- Gain-phase plots
 - Traditional gain-phase plots
 - Gain-phase plot approximations and non-invasive measurements
- Nyquist plots and Stability margin
- Other metrics
- What can go wrong?
 - Wrong test signal level
 - Spurious signals
 - Impact of test equipment and load circuit
 - Measurement location
- Summary and Conclusions

Gain-Phase Measurement Connection

- Requires floating source
- Injection level is important
- Invasive connection

UBM

- Introduction
- Gain-phase plots
 - Traditional gain-phase plots
 - Gain-phase plot approximations and non-invasive measurements
- Nyquist plots and Stability margin
- Other metrics
- What can go wrong?
 - Wrong test signal level
 - Spurious signals
 - Impact of test equipment and load circuit
 - Measurement location
- Summary and Conclusions

Gain-Phase Measurement Based on Impedance (1)

- Open-loop output impedance can be approximated by OFF impedance
- 'Peaky' example

Steve Sandler, "Killing the Bode Plot," DesignCon 2016, January 19-21, 2016, Santa Clara, CA.

 $G_{open-loop}(f) = \frac{Z_{out-open-loop}(f)}{Z_{out-closed-loop}(f)} - 1$

Gain-Phase Measurement Based on Impedance (2)

- Open-loop output impedance can be approximated by OFF impedance
- Optimized example

$$G_{open-loop}(f) = \frac{Z_{out-open-loop}(f)}{Z_{out-closed-loop}(f)} - 1$$

Steve Sandler, "Killing the Bode Plot," DesignCon 2016, January 19-21, 2016, Santa Clara, CA.

Gain-Phase Measurement Based on Impedance (3)

DC bias for OFF impedance is important

JAN 31-FEB 2, 2017

NISM Example on Low-Noise DUT

JAN 31-FEB 2, 2017

- NISM is noninvasive
- Estimates phase margin based on second order model

of output impedance

Steve Sandler, "Killing the Bode Plot," DesignCon 2016,

January 19-21, 2016, Santa Clara, CA.

NISM Example on High-Noise DUT

Steve Sandler, "Killing the Bode Plot," DesignCon 2016, January 19-

21, 2016, Santa Clara, CA.

- Introduction
- Gain-phase plots
 - Traditional gain-phase plots
 - Gain-phase plot approximations and non-invasive measurements
- Nyquist plots and Stability margin
- Other metrics
- What can go wrong?
 - Wrong test signal level
 - Spurious signals
 - Impact of test equipment and load circuit
 - Measurement location
- Summary and Conclusions

Impedance, Gain-Phase on Unstable Converter

JAN 31-FEB 2, 2017

18 UBM

h

Nyquist and Stability Plots on Unstable Converter

JAN 31-FEB 2, 2017

i 1

Impedance, Gain-Phase on Stable Converter

JAN 31-FEB 2, 2017

UBM

Nyquist and Stability Plots on Stable Converter

Characteristic Equation

JAN 31-FEB 2, 2017

21 UBM

- Introduction
- Gain-phase plots
 - Traditional gain-phase plots
 - Gain-phase plot approximations and non-invasive measurements
- Nyquist plots and Stability margin

Other metrics

- What can go wrong?
 - Wrong test signal level
 - Spurious signals
 - Impact of test equipment and load circuit
 - Measurement location
- Summary and Conclusions

Impedance Profile and Characteristic Expression Impedance [OFF, C

- Impedance plot has peaks
- The lows of the Characteristic Expression occur at the same frequency points
- Direct correlation between impedance profile peaks and instability

$$Z_{out-closed-loop}(f) = \frac{Z_{out-open-loop}(f)}{1 + G_{open-loop}(f)}$$

- Introduction
- Gain-phase plots
 - Traditional gain-phase plots
 - Gain-phase plot approximations and non-invasive measurements
- Nyquist plots and Stability margin
- Other metrics
- What can go wrong?
 - Wrong test signal level
 - Spurious signals
 - Impact of test equipment and load circuit
 - Measurement location
- Summary and Conclusions

Gain-Phase Curves vs. Injection Level

- Loop gain varies several orders of magnitude over frequency
- Improper signal level can lead to saturation or noisy results

1.0E+08

1.0E+08

- Introduction
- Gain-phase plots
 - Traditional gain-phase plots
 - Gain-phase plot approximations and non-invasive measurements
- Nyquist plots and Stability margin
- Other metrics
- What can go wrong?
 - Wrong test signal level
 - Spurious signals
 - Impact of test equipment and load circuit
 - Measurement location
- Summary and Conclusions

Impedance and Gain-Phase vs. DC Load Current

- Measured small signal output impedance can be a significant function of load current
- At the same time, measured gain-phase also changes

Periodic Output Disturbance

 At the operating point of sudden change, a periodic, uncorrelated

ripple appears

Impedance vs. Injection Level

 At the operating point of sudden change, the measured output impedance linearly varies with injection level

*

- Introduction
- Gain-phase plots
 - Traditional gain-phase plots
 - Gain-phase plot approximations and non-invasive measurements
- Nyquist plots and Stability margin
- Other metrics
- What can go wrong?
 - Wrong test signal level
 - Spurious signals
 - Impact of test equipment and load circuit
 - Measurement location
- Summary and Conclusions

Impedance of Electronic Load

- High current electronic loads have capacitors across their input
- The extra capacitance can change the DUT behavior

Effect of Electronic Load

 Measured output impedance and gainphase plots with and without extra capacitance in electronic load

32

UBM

Impact of Secondary Output Filter

()

UBM

Geometry for Plane R-C Filtering

- 16 1000uF D-size bulk capacitors populated
- Configurations target various cases of extra phase shift in voltage transfer function
 Remote

"Impact of Regulator Sensepoint Location on PDN Response," DesignCon 2015,

2015

Santa Clara, CA, January 27 - 30,

Plane R-C Filtering

Voltage Transfer magnitude [-]

35

#

UBM

Voltage Transfer phase [deg]

- Introduction
- Gain-phase plots
 - Traditional gain-phase plots
 - Gain-phase plot approximations and non-invasive measurements
- Nyquist plots and Stability margin
- Other metrics
- What can go wrong?
 - Wrong test signal level
 - Spurious signals
 - Impact of test equipment and load circuit
 - Measurement location
- Summary and Conclusions

Effect of Measurement Location

1730mils

곆

Test Point

VR

IC Pin

Sense Point

Controller

UBM

Effect of Measurement Location

Green

Sense: 1, Measure: 2

Blue

Sense: 2, Measure: 2

Red

Sense: 2, Measure: 1

- Introduction
- Gain-phase plots
 - Traditional gain-phase plots
 - Gain-phase plot approximations and non-invasive measurements
- Nyquist plots and Stability margin
- Other metrics
- What can go wrong?
 - Wrong test signal level
 - Spurious signals
 - Impact of test equipment and load circuit
 - Measurement location
- Summary and Conclusions

Summary and Conclusions

- Phase and gain margins are useful metrics only in special cases
- Nyquist plot, Characteristic expression and Stability margin plots provide specific views of DUT stability conditions
- Direct loop gain measurement is invasive but most robust
- NISM is noninvasive, works well with low-noise peaky impedance profiles
- Loop gain calculated from OFF and ON impedances is minimally invasive, but measurement location matters
- Measuring the loop gain function requires careful setting of injection power
- Frequency-domain measurements are invalid if uncorrelated tracking spurious signals are generated by the DUT

Thank you!

QUESTIONS?

JAN 31-FEB 2, 2017

UBM