How Spatial Variation of Voltage Regulator Output Impedance Depends on Sense Point Location

Alejandro 'Alex' Miranda, (Oracle Corporation) Joseph 'Abe' Hartman, (Oracle Corporation) Kavitha Narayandass, (Oracle Corporation) Ethan Koether, (Oracle Corporation) Gustavo Blando, (Oracle Corporation) Istvan Novak, (Oracle Corporation)

SPEAKER

Istvan Novak

Senior Principal Engineer, Oracle Corporation istvan.novak@oracle.com

Istvan is a Senior Principle Engineer at Oracle. Besides signal integrity design of high-speed serial and parallel buses, he has been engaged in the design and characterization of power-distribution networks and packages for mid-range servers. He creates simulation models, and develops measurement techniques for power distribution. Istvan has twenty plus years of experience with high-speed digital, RF, and analog circuit and system design. He is a Fellow of IEEE for his contributions to signal-integrity and RF measurement and simulation methodologies and has twenty five patents in the areas of power distribution design and precision measurements.

Introduction

In competitive designs spatial attenuation and delay can not be ignored

3

The Noise Budget

Assuming LTI system and flat impedance:

$$Z_{target} = \frac{\Delta V}{\Delta I}$$

 $\Delta V = (Vmax - Vmin) - DC_drop - PARD$

Non-flat Impedance: Depth of a Single Notch

Non-flat Impedance: Depth of a Single Notch

Worst-case transient noise

- Increases as depth of
 - notch increases
- Relative increase is
 - proportional at small blips
- Saturates at about 2x

extra noise

Non-flat Impedance: Number of Notches

Worst-case transient noise

- Increases with the number of notches
- Effect is additive for widely separated dips

Rser=0

ac dec 100

L2 4.77μ

R2

C2

531m

0.001

1.592r

R3

0.00

15.92u

Rser:

AC 1

PWL(0 0 1e-1

Correlation, DUT1: Measurement Location

DUT

- Vin = 4.5V
- Vout = 1.2V
- 1.5A DC load current
- 0.5App transient step

Instruments can be connected in a multitude of ways

- Across output terminals (correct)
- Across output capacitor (*wrong*)

Correlation: Correct Location

Impedance curves:

- Measured with 0dBm VNA source power
- Calculated from falling transient response
- Calculated from rising transient response

Normalized transient response

Logarithmic horizontal scale

Transient curves:

- Measured falling response with oscilloscope
- Inverted rising response with oscilloscope
- Calculated from impedance

Step Response Details for Reverse Pulse Technique

Time (us)	Vout (V)
0	1.184
6.143	1.123
21.37	1.184
29.82	1.179
42.99	1.184
50.04	1.182

- Falling Step Response
- 1.5A DC load
- 0.5A step current
- Averaged to suppress

switching ripple

Worst-Case Noise from Reverse Pulse Technique

- Worst-case pattern
- 0.5A current steps
- Averaged to suppress

switching ripple

Nonlinear Response

Distorted Data: Wrong Connections

Impedance curves:

- Measured with 0dBm VNA source power
- Calculated from falling transient response
- Calculated from rising transient response

1.2 1.18 $V_{OUT}(V)$ 1.16 1.14 1 12 -10 10 20 30 40 50

 $t \ (\mu s)$

0

Normalized transient response

Transient curves:

- Measured falling response with oscilloscope
- Inverted rising response with oscilloscope
- Calculated from impedance

Wrong Connections, Added Capacitor

Impedance curves:

- Measured with 0dBm VNA source power
- Calculated from falling transient response
- Calculated from rising transient response

Transient curves:

- Measured falling response with oscilloscope
- Inverted rising response with oscilloscope
- Calculated from impedance

Added Capacitor, Worst-Case Transient Noise

Time (us)	Vout (V)
0	1.183
33.63	1.171
164.4	1.185
303.7	1.183
433.0	1.182
565.0	1.1823

Location of Connections, DUT2

Output impedance curves at three different combinations of sense-point and measurement locations (from [8]). Red curve: measure at point 1, sense connected to point 2. Green curve: measure at point 2, sense connected to point 1. Blue curve: measure at point 2, sense connected to point 2.

Location of Connections, DUT2

- Impedance measured with VNA
- Impedance measuring

cables are Cable1 and

Cable2

• Three sense-point

connections

DUT2, Zout, Connection Scheme A

Coupling in connecting cable pigtail results in unrealistically low impedance at SRF.

DUT2, Gain-phase, Connection Scheme A

72.51 degree phase margin

DUT2, Zout, Connection Scheme B

Coupling in connecting

cable pigtail is at

acceptable level.

DUT2, Gain-phase, Connection Scheme B

72.29 degree phase margin

Frequency [Hz]

DUT2, Zout, Connection Scheme C

Coupling in connecting

cable pigtail is at

acceptable level.

DUT2, Gain-phase, Connection Scheme C

Gain magnitude and phase [dB, deg]

72.43 degree phase margin

Impedance Variation by Design Choice, DUT3

- Core rail for two ASICs
- Rectangles show core pin arrays
- DC-DC converter in the middle
- Sense-point options:
 - At ASIC1
 - At ASIC2
 - Average of ASIC1 and ASIC2
 - At DC-DC converter output

DUT3, Measurement Locations

- Two-port connections in the ASIC core pinfield
- Option1: self
 impedance across
 adjacent pad pairs (top)
- Option2: partial transfer impedance (top)

JBM

 Option3: transfer impedance pad-tocapacitor (bottom)

DUT3, Option1

• Self impedance at ASIC1 pinfield

Sense connection:

- Case1: at ASIC1
- Case2: at ASIC2
- Case3: ASIC1 and ASIC2 average
- Case4: DC-DC output

Cases differ only below the crossover frequency

DUT3, Option2

Partial transfer impedance at ASIC1 pinfield Sense connection:

- Case1: at ASIC1
- Case2: at ASIC2
- Case3: ASIC1 and ASIC2 average
- Case4: DC-DC output
 Cases differ only below the crossover frequency
 Deeper notch

DUT3, Option3

Pad-to-capacitor transfer impedance at ASIC1 pinfield

Sense connection:

- Case1: at ASIC1
- Case2: at ASIC2
- Case3: ASIC1 and ASIC2 average
- Case4: DC-DC output Cases differ below the crossover frequency and at SRF

Conclusions

- For linear and time invariant systems, time and frequency domain results are equivalent
- Connections must be identical
- Worst-case transient noise increases with depth of notch in impedance
- Noise increase is additive for multiple notches
- Measurement probe placed on capacitor will alter data
- Further away from sense points the impedance is also influenced by plane resistance

Thank you!

QUESTIONS?

JAN 30-FEB 1, 2018

31