

How to Design Good PDN Filters

Istvan Novak, Samtec

This session was presented as part of the DesignCon 2019 Conference and Expo. For more information on the event, please go to DesignCon.com

How to Design Good PDN Filters

January 29 - 31, 2019

Istvan Novak, (Samtec)

SPEAKER

Istvan Novak

Principle Signal and Power Integrity Engineer Istvan.novak@samtec.com

January 29 - 31, 2019

Istvan Novak is a Principle Signal and Power Integrity Engineer at Samtec, working on advanced signal and power integrity designs. Prior to 2018 he was a Distinguished Engineer at SUN Microsystems, later Oracle. He worked on new technology development, advanced power distribution and signal integrity design and validation methodologies for SUN's successful workgroup server families. He introduced the industry's first 25um power-ground laminates for large rigid computer boards, and worked with component vendors to create a series of low-inductance and controlled-ESR bypass capacitors. He also served as SUN's representative on the Copper Cable and Connector Workgroup of InfiniBand, and was engaged in the methodologies, designs and characterization of power-distribution networks from silicon to DC-DC converters. He is a Life Fellow of the IEEE with twenty-five patents to his name, author of two books on power integrity, teaches signal and power integrity courses, and maintains a popular SI/PI website.

OUTLINE

- * Introduction, scope
- * Requirements
- * Filter design procedure
- * What can go wrong
 - > Wrong layout
 - Bias dependence
- * Simulations and correlations

January 29 - 31, 2019

* Demos

OUTLINE

* Introduction, scope

* Requirements

- * Filter design procedure
- * What can go wrong
 - Wrong layout
 - Bias dependence
- * Simulations and correlations

January 29 - 31, 2019

* Demos

UBM

5

What This Is and What This Is NOT

- * This tutorial is NOT about all-parallel bypassing
- * This tutorial is about PDN structures where series elements (whether intentionally placed or accidentally

being in the circuit) matter for the performance

When We Need a Filter

To feed a sensitive low-current load

January 29 - 31, 2019

When We Need a Filter

To keep noise spilling out from noisy loads

January 29 - 31, 2019

<u>samțec</u>

Typical Noise Source

- * DC-DC converters are popular and needed for their high efficiency
- * They tend to generate a lot of noise

DC-DC Converter Output Ripple Voltage

- The inductor ripple current flows through the output capacitor
- First-order mid-frequency capacitor model = ESR-only
- Output ripple voltage shape closely follows inductor ripple current

If Cload*ESR pole is below Fsw, the output ripple is:

 $\Delta v = ESR^* \Delta I$

10

DC-DC Converter Output Ripple Voltage

Time-domain harmonic composition of buck converter switching ripple

	OUTPUT CAPACITORS							Environt land	Sweep				
	C1	C2	C3	C4	C5	Fmin [Hz]	Vin [V]	FSW HZJ	Min	D [%]	Ripple [mVpp]	m	
C [F]	4.70E-04	4.70E-05	1.00E-05	1.00E-06	3.00E-09	1.00E+03	12	5.00E+05	1	8.33	4.53	12.00	istvan novak@ieee.org
R [Ohm]	1.00E-02	3.00E-03	1.00E-02	1.00E+06	1.00E+06	Fmax [Hz]	Vout [V]	L	Max	delta_I [A]	Ripple est [mVpp]	Ratio [-]	www.electrical integrity.com
L [H]	2.00E-09	2.00E-09	1.00E-09	1.00E-09	1.00E-10	1.00E+08	1	4.70E-07	10	3.9E+00	2.89	1.57	www.ebcuical-integrity.com
N [-]	3	3	10	0	0								

• The inductor ripple current flows through the output capacitor

Number of

periods

- First-order midfrequency capacitor model = ESR-only
- Output ripple voltage shape closely follows inductor ripple current

January 29 - 31, 2019

11

DC-DC Converter Input

- * The input voltage is chopped by the switches
- * Inductor current is continuous
- * Input current has large jumps

DC-DC Converter Ringing

- * The switching edges may have high-frequency transients
- * Ringing frequency: 50 1000 MHz

Source:

January 29 - 31, 2019

- Mid-Frequency Noise Coupling between DC-DC Converters and High-Speed Signals, DesignCon 2016

13

- What is New in DC-DC Converters; An OEM's Perspective, DesignCon 2012

OUTLINE

* Introduction, scope

* Requirements

- * Filter design procedure
- * What can go wrong
 - Wrong layout
 - Bias dependence
- * Simulations and correlations

January 29 - 31, 2019

* Demos

UBM

Analog Supply Noise Filter (1)

Typical noise to filter: DC-DC converter output ripple.

()

UBM

Analog Supply Noise Filter (2)

Possible functions and requirements:

- * Low-pass filtering from main to secondary
- * Low-pass filtering from secondary to primary
- * Output impedance for the load (*)
- * Input impedance for the source (*)
- (*) Optional requirement

January 29 - 31, 2019

Passive filters may be physically symmetrical

Relevant transfer functions are mostly not symmetric

Watch DC voltage drops closely

Analog Supply Noise Filter (3)

Static and dynamic budget

UBM

January 29 - 31, 2019

Analog Supply Noise Filter (4)

Transfer Functions

What transfer function matters?

- * Z₂₁ or S₂₁?
- * Something else?

January 29 - 31, 2019

()

UBM

Transfer Functions

For filters from a high-current to a low-current rail we need the *unloaded voltage transfer function:* V_{out}/V_{in}

January 29 - 31, 2019

Impedances

What filter impedance function matters?

- * Z₁₁, or Z₂₂?
- * Something else?

For filters from a high-current to a low-current rail: Output impedance

with shorted input and input impedance with open output

UBM

Filter Illustration

	V(output1)									
1008-										
				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1 1 1 1 1 1 1 1 1 1 1 1		
0dB-										
-10dB-		· · · · · · · · · · · · · · · · · · ·								
TOUL							/ /			
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								
-20dB-				× «-•••××						
							/	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
-30dB-										
40dB										
-40ub								$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
-50dB-		J - L L L J L J .								
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1 1 1 1 1 1 1 1 1 1 1 1		
-60dB-			· · · · · · · · ·							
100	Hz	1KHz	10KHz	100KHz	1MHz	10MHz	100MHz	1GHz		

January 29 - 31, 2019

C_{out}=C2

100 μF 0.003 ohm 5 nH

UBM

23

January 29 - 31, 2019

Filter Illustration

OUTLINE

- * Introduction, scope
- * Requirements
- * Filter design procedure
- * What can go wrong
 - Wrong layout
 - Bias dependence
- * Simulations and correlations

January 29 - 31, 2019

* Demos

The Filter Design Process

Collect input requirements

- * Offending frequency components (frequency, magnitude) to filter
- * Necessary attenuation
- * Set design parameters:
- * Filter cutoff frequency f_c and Q

January 29 - 31, 2019

Design the inductance and bulk capacitance based on:

Or use a circuit simulator to quickly iterate component values...

Low-Current Filter Example (1)

Design requirements for low-current filter

- * Cutoff frequency $f_c = 100 \text{ kHz}$ (DC-DC converter running at 1MHz)
- * Q = 0.5

Assume R_s = 1 Ohm

$$f_c = \frac{1}{2\pi\sqrt{LC}}, \ Q = \frac{\sqrt{C}}{R_s}$$

L

Low-Current Filter Example (2)

Low-Current Filter Example (3)

Ceramic Type /	Voltage / Capac	itance		
Selected components: * Coilcraft 181PS-272 L = 2.7 μH 0.08 Ohm * Kemet C0805C106K4PAC C = 10 μF 4 mOhm 1 nH	Chip Standard Chips C C1210 C C1812 C C1825 C C2220 C C2225	High Voltage Chips C0805 C2520 C1206 C3333 C1210 C3530 C1808 C4040 C1812 C4540 C1825 C5440	Dielectric Type COG © G Y5V © V X7R R Z5U © X5R P X8L N X8R H Values available in selection are based on chip style, dielectric type, and rated voltage. State State	Rated Voltage 2VDC 4VDC 7 6.3 Volts 9 10 VDC 8 16 VDC 4 25 VDC 3 35 VDC 3
CA052 CA054-HT Coilcraft Search our site:	C CA064	C C2220 C C5550 C C2225 C C6660 KPS Series Design Support Tools	Capacitance List 1.0 μF · C0805C105K3PAC 1.2 μF · C0805C125K4PAC 1.5 μF · C0805C155K4PAC 1.8 μF · C0805C185K4PAC 2.2 μF · C0805C225K4PAC	 50 VDC 100 VDC 200 VDC 250 VDC 500 VDC 1000 VDC 1500 VDC
Home Design Tools Samples Kits Price + Stock Sales S Power Inductor Finder Results • These results do not imply an exact match to your requirements. • We recommend that you request a free sample before an order is placed.	upport Jobs Index	Power Magnetics Tools * 312 RF Inductor Tools * 325 CM Filter Finder Tool 220 IC / Inductor Match Tool 225 Other Tools * 02xBX	2.7 μF - C0805C275K4PAC 3.3 μF - C0805C335K4PAC 4.7 μF - C0805C475K4PAC 4.7 μF - C0805C475K3PAC 5.6 μF - C0805C565K8PAC 6.8 μF - C0805C565K8PAC 8.2 μF - C0805C565K8PAC 10 μF - C0805C106K8PAC	 2000 VDC 2500 VDC 3000 VDC 4000 VDC 5000 VDC 7500 VDC
Sort results by: Footprint DCR • Sort Your inputs: Any Any core 2.7 0.1 Image: Core and	ax W max H max (mm) (mm) (mm) (7 4.98 3.81 0 4.45 2.92 0 8.00 3.10	402 503 Price Piek amax 50.00 Compare 50.83 C	Do not convert PN to selected voltage.	€ 10000 VDC <u>D</u> one <u>Q</u> uit
RFB0807-2R7 Leaded Ferrite 2.7 0.0140 5.5 6.54 8.8 MSS10387-252 SM Ferrite S 2.5 0.0100 9.26 6.65 10.5	0 8.80 7.50 0 10.20 4.00	\$0.30 \$0.55		

High-Current Filter Example (1)

Design requirements for high-current filter

- * Cutoff frequency $f_c = 30 \text{ kHz}$ (DC-DC converter running at 300 kHz)
- * Q = 0.5

Assume $R_s = 10$ mOhm

January 29 - 31, 2019

- Calculated values:
- * L = 27 nH
- * $C = 1000 \ \mu F$

Select:

- * L = 27 nH 1 mOhm
- * $C = 1000 \ \mu F \ 9 \ mOhm$

High-Current Filter Example (2)

UBM

January 29 - 31, 2019

High-Current Filter Example (3)

<u>samțec</u>

UBM

32

January 29 - 31, 2019

High-Current Filter Example (4)

Derau	its help (i 1)			
	🔀 Aluminum-Tanta	alum Series/Case/Style Selection		×
	 Capacitor Series 		2	Capacitance Available :
	T 494 - Low ESR/Indu T 495 - T antalum Low- T 495 - T antalum Low- T 497 - T antalum High T 499 - T antalum High T 499 - T antalum High T 510 - T antalum Low- T 510 - T antalum - Low T 520 - T antalum - Low T 520 - T antalum - Low T 522 - T antalum - Low T 520 - T antalum - Low T 530 - T antalum - KI T 541 - T antalum - Low T 543 - T antalum - Low T 543 - T antalum - Low	ustrial Grade -ESR / Surge Robust sed I Grade (English Dim) Temperature (+150C) Temperature (+175C) W-ESR Multiple Anode W-ESR Multiple Anode O) - High Volt (>16) O) - Reduced Leakage O) - High Temp (+125C) O) - Facedown Term O) - Multiple Anode JTS Low ESR DTS Low ESR Mult Anodes) DTS Low ESR	Voltage 2 Volts 15 Volts 2 Volts 16 Volts 3 Volts 20 Volts 4 Volts 25 Volts 6 3 Volts 20 Volts 6 3 Volts 50 Volts 8 Volts 50 Volts 10 Volts 63 Volts 11 Volts 63 Volts	680 μF - T520Y687M2R5ATE015 680 μF - T520Y687M2R5ATE025 1,000 μF - T520Y108M2R5ATE010 1,000 μF - T520Y108M2R5ATE015 1,000 μF - T520Y108M2R5ATE025
	Case Code / EIA S	Style (mm)	C 12.5 Volts C 100 Volts	
2 http://www.hparchiveBounce_Problems.pdf & Collcraft Inductor Finder			Selected compo	nonte
	한국이 💽 前体中文 🚟			ments.
Coilcraft Inductor finders: Power RF Search our site:	BUY NOW	Design Support Tools	F ∗ FA2769-AL L 0.2 mOhm	= 26 nH
Home Design Tools Samples Kits Price + Stock Sales	Support Jobs Index	· · · · · · · · · · · · · · · · · · ·	™ * T520V108M2	R5ATE010
		RF Inductor Tools 🔹	15201100002	NJAILUIU
Power Inductor Finder Results		CM Filter Finder Tool	C = 1000 μF	10 mOhm 5 nH
These results do not imply an exact match to your requirements.		IC / Inductor Match Tool		
• We recommend that you request a free sample before an order is placed	l.	Other Tools 🔹	5 • LF Length • 1.3zu.3	
Sort results by: Footprint . DCR			KEMET Electronics Corp. @1998-2013	Quit Version 3.9.68
Your inputs: Any 💌 Any core 💌 27 1		pdate Compare		V CESTOLE 0.9.00
Part number Mount Core material Other* L DCR I sat I rms (mΩ) (A) (A) (A) (A) (A) (A)	L max W max H max (mm) (mm) (mm) (Price Pick 4 max @1,000 Compare		
FA2769-AL SM Ferrite S 26.00 0.2 29 6.5	6.10 4.32 2.60	\$0.56		

()

UBM

OUTLINE

- Introduction, scope
- * Requirements
- * Filter design procedure
- * What can go wrong
 - > Wrong layout
 - Bias dependence
- * Simulations and correlations

January 29 - 31, 2019

* Demos

What Can Go Wrong Layout issues

- * In high-current filters (voltage drop matters)
 - DC issues around contact resistance
 - resistance increase in corners
 - uneven distribution of currents in via arrays
- * In wide-band and high-attenuation filters
 - sneaky path around components
 - Sneaky path on the board
- * Too much phase shift if the filter is inside a converter feedback loop (usually in unintentional filters)

January 29 - 31, 2019

* Stub resonance

Filter Geometry A possible problem

We may not have room for filter capacitors near IC pins. But an extreme terminated trace resonates and amplifies noise.

UBM

January 29 - 31, 2019

Be Aware

- * Sometime parasitic elements create non-negligible filtering
- * All filter components may be impacted by bias stress
 - > Capacitance loss due to voltage bias
 - Inductance loss due to current bias
- * The filter has to pass DC current and therefore very low frequency noise can not be eliminated
 - > Sub-harmonic converter ripple
 - Low frequency random noise
- * Series resistive loss maintains second-order filtering; resistance in the parallel path approaches first-order filtering
- * Check the DC-DC converter operating frequency before you switch to a different converter!

January 29 - 31, 2019

40

Be Aware

Measured illustration of a DC-DC converter creating out-ofband low-frequency oscillation

- * 6 kHz periodic disturbance in a narrow operating point range
- * 500 kHz switching frequency
- * Single-phase 12V to 0.9V regulator

Source: "Overview and Comparison of Power Converter Stability Metrics," DesignCon 2017

Be Aware

- Random wander of current sharing *
- 600 kHz switching frequency *

January 29 - 31, 2019

Current sharing among phases in the time domain Spectrum of output voltage

Source: "Measuring current and current sharing of DC-DC converters," DesignCon 2018

Tab1

Tab2

42

Be Aware: Distribution of Loss

Series resistive loss maintains second-order filtering; resistance in the parallel path approaches first-order filtering

43

Be Aware: Q Amplification

.ac dec 100 1e4 1e7 Vout С1 470µ C2 10µ 11 [>]R1 [°]R2 4 ⁵5m ີ 5m 0 AC -1 0 ⊲∕L1 \sim 10n)1n 5

.ac dec 100 1e4 1e7

Source: "Electrical and Thermal Consequences of Non-Flat Impedance Profiles," DesignCon 2016

January 29 - 31, 2019

.

Be Aware: Bias Effect

.ac oct 100 100 1E9 .include GRM21BB30G476ME15_LT.mod .include BLM18PG121SN1.mod .step param Vdc 0 4 4 .step param Idc 0 2 2

DESIGNCON[®] 2019 WHERE THE CHIP MEETS THE BOARD

January 29 - 31, 2019

46

Loss of Capacitance in MLCCs

	Percentage range [%]	Relative multiplier
Initial tolerance	+-10	0.9 1.1
Temperature effect	+-15	0.85 1.15
DC bias effect	+0 -70	0.3 1
AC bias effect	+0 -30	0.7 1
Aging (over 3 years)	+0 -7.5	0.925 1

- * For worst case, have to multiply all multipliers
- * High CV ceramic capacitors can lose up to 85% of capacitance

January 29 - 31, 2019

* Highest impact is DC and AC bias voltage

Source: "How Much Capacitance Do We Really Get?," QuietPower columns, http://www.electrical-integrity.com/Quietpower_files/QuietPower-40.pdf

0.15 1.27

47

Loss of Capacitance in MLCCs, Temperature

48

EIA Class II and Class III ceramics

First character: Z: + 10C Y: - 30C X: - 55C

Second character: 2: + 45C 4: + 65C 5: + 85C 6: + 105C 7: + 125C 8: + 150C 9: + 200C	Third character: F: +- 7.5% P: +- 10% R: +- 15% S: +- 22% T: + 22 / - 33% U: + 22 / - 56%
9: + 200C	U: + 22 / - 56% V: + 22 / - 82%

January 29 - 31, 2019

The specification defines the bounding box only, not the shape of the curve

Loss of Capacitance in MLCCs, DC Bias

Old assumptions are not valid any more!

- In the past X7R capacitors were thought to lose less capacitance than X5R capacitors.
- Not true any more
- Last character on plot labels refers to X5R or X7R

Source: "How Much Capacitance Do We Really Get?," QuietPower columns, http://www.electrical-integrity.com/Quietpower_files/QuietPower-40.pdf

January 29 - 31, 2019

Loss of Capacitance in MLCCs, AC Bias

- * Vendors test with 0.5 or 1.0Vrms source voltage at 100/120Hz
- Most of the source voltage appears across the DUT
- * Bypass applications call for mV or tens of mV noise across the capacitors
- * In small signal applications we loose 20-30% capacitance

Source: https://psearch.en.murata.com/capacitor/product/GRM21BB30G476ME15%23.html

UBM

50

The Good News

Other capacitor types show minimal or no DC or AC bias effect.

UBM

Loss of Inductance in Ferrite Beads

- * High permeability materialscan lose significant inductance
- * Highest impact is DC current

Frequency [MHz]

OUTLINE

- * Introduction, scope
- * Requirements
- * Filter design procedure
- * What can go wrong
 - > Wrong layout
 - ➢ Bias dependence

Simulations and correlations *

* Demos

Simulation Models

- * Ideal C (default model in some tools)
- * C-R, frequency independent (used in DC-DC modeling
- * C-R-L, frequency independent (simple SPICE subcircuits)

January 29 - 31, 2019

- * C-R-L, frequency dependent fitted models
- * S-parameter models, series or parallel
- * 2-D RLC grid
- * 3-D RLC grid
- * Dynamic models

54

Model Fitted to Measured Data

22uF Alu MODEL PARAMETERS: _md R_md L_md

C_md R_md L_md 2.20E-05 6.50E-01 1.80E-08

 $C_md R_md L_md$

2D Grid MLCC Model

UBM

January 29 - 31, 2019

DESIGNCON[®] 2019 WHERE THE CHIP MEETS THE BOARD

56

Modeling Capacitance and Inductance Variations

Source: "Needs and Capabilities for Modeling of Capacitor Derating," DesignCon 2016, courtesy of Shoji Tsubota

Modeling Capacitance and Inductance Variations

()

Dynamic Models, Testing Small Signal DC Bias

ESIGNCON[®] 2019

January 29 - 31, 2019

59

Dynamic Models, Effect of AC Test Current

Dynamic Models, Test Large-signal Nonlinearity

Source: "Dynamic Models for Passive Components," QuietPower columns, http://www.electrical-integrity.com/Quietpower_files/QuietPower-36.pdf

January 29 - 31, 2019

(

UBM

Acknowledgement and Resources

Special thanks to

- Keysight and Picotest for providing demo equipment
 - https://literature.cdn.keysight.com/litweb/pdf/5990-4392EN.pdf
 - https://www.picotest.com/products_BODE100.html
- Murata for assisting with dynamic models and samples
 - https://www.murata.com/en-us/tool
- Simulations were done with Analog Devices' free LTSPICE
- Filter evaluation boards
 - https://www.sv1afn.com/rf-experimenter-s-pcb-panel.html

This presentation is based on the following training course materials

January 29 - 31, 2019

https://www.cei.se/course-056-power-integrity-advanced-design-and-characterization-group.html https://www.cei.se/course-055-signal-integrity-advanced-high-speed-design-and-characterization-group.html https://www.conted.ox.ac.uk/courses/making-successful-power-distribution-designs

THANK YOU!

Any Questions?

UBM

OUTLINE

- Introduction, scope
- * Requirements
- * Filter design procedure
- * What can go wrong
 - Wrong layout
 - Bias dependence
- * Simulations and correlations

January 29 - 31, 2019

65

* Demos

Test Board Construction, Build

R L1 T C1 Vin C1 BLM18PG121SN1 C2 C1 C1 BLM18PG121SN1 C2 L1 GRM21BR60J107ME15 GRM21BR60J107ME15 GRM21BR60J107ME15

DUT Circuit

DESIGNCON[®] 2019 WHERE THE CHIP MEETS THE BOARD

January 29 - 31, 2019

L1: 120 Ohm @ 100 MHz 0603 2A 50mOhm

Simulation Setup

Simulated Corners

Simulated with **LTSPICE** and Murata dynamic models.

January 29 - 31, 2019

Simulated Voltage Bias Effect

January 29 - 31, 2019

Simulated Current Bias Effect

Simulated with LTSPICE and Murata dynamic models.

Idc = 0...1A Vbias =4V

Measurement Setup

Frequency Response Analyzer

January 29 - 31, 2019

Options for Adding Bias

Bode 100 Setup

- 1) Omicron Bode 100
- 2) Laptop
- 3) DUT
- 4) DC voltage bias (battery)
- 5) DC current bias (electronic load)

Bode 100 Results

January 29 - 31, 2019

76

E5061B Gain-Phase Setup

77

E5061B Network Analyzer

E5061B OdBm source O and 4V DC bias OA current bias

January 29 - 31, 2019

78

E5061B Network Analyzer

E5061B OdBm source O and 10V DC bias OA current bias

E5061B Network Analyzer

E5061B 10dBm source 0 and 4V DC bias 0A current bias

January 29 - 31, 2019

E5061B Network Analyzer

E5061B 10dBm source 0 and 10V DC bias 0A current bias

January 29 - 31, 2019

.

E5061B S-parameter Setup

E5061B S-parameter Results

E5061B Network Analyzer

E5061B OdBm source No bias

Correlation with No Bias

84

January 29 - 31, 2019

OdBm source

- LTSPICE
- Bode100
- E5061B GP side

Correlation with Voltage Bias

OdBm source

- LTSPICE
- Bode100
- E5061B GP side

Correlation with Voltage and Current Bias

January 29 - 31, 2019

OdBm source

- LTSPICE
- Bode100
- E5061B GP side

86

Acknowledgement and Resources

Special thanks to

- Keysight and Picotest for providing demo equipment
 - https://literature.cdn.keysight.com/litweb/pdf/5990-4392EN.pdf
 - https://www.picotest.com/products_BODE100.html
- Murata for assisting with dynamic models and samples
 - https://www.murata.com/en-us/tool
- Simulations were done with Analog Devices' free LTSPICE
- Filter evaluation boards
 - https://www.sv1afn.com/rf-experimenter-s-pcb-panel.html

This presentation is based on the following training course materials

January 29 - 31, 2019

https://www.cei.se/course-056-power-integrity-advanced-design-and-characterization-group.html https://www.cei.se/course-055-signal-integrity-advanced-high-speed-design-and-characterization-group.html https://www.conted.ox.ac.uk/courses/making-successful-power-distribution-designs

THANK YOU!

Any Questions?

UBM