Welcome to DESIGNCON® 2021 WHERE THE CHIP MEETS THE BOARD

Conference

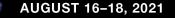
August 16 – August 18, 2021

Expo

August 17 – August 18, 2021

San Jose McEnery Convention Center

AUGUST 16-18, 2021

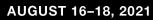


A Case Study in the Development of 112 Gbps-PAM4 Silicon and Connector Test Platform

Jean-Remy Bonnefoy (Samtec)

Ted Ballou, Istvan Novak, Gustavo Blando, Scott McMorrow (Samtec) Raj Mahadevan (Alphawave IP)

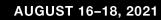
SPEAKER



Jean-Remy Bonnefoy

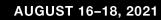
Systems engineer, Samtec jean-remy.bonnefoy@samtec.com

Jean-Remy Bonnefoy is a Systems Engineer for Samtec's Signal Integrity Group. He is involved in the design of high-speed test systems, and he leads the hardware development of evaluation and demonstration platform for high data rate interconnects.



OUTLINE

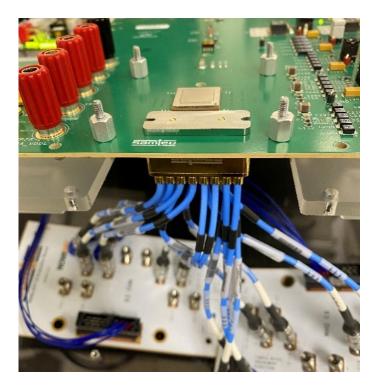
- Optimizing a 112G test channel
- Power delivery network
- Channel performance
- Summary and conclusions



OUTLINE

Optimizing a 112G test channel

- Power delivery network
- Channel performance
- Summary and conclusions

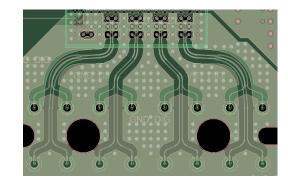


Optimizing a 112G-PAM4 test channel

Challenges and goals:

- Design an evaluation platform for 112G-PAM4 silicon and connector system
- 3 dB total II at 28 GHz for TX lanes 0
- o Use affordable, readily available material

#DesignCor


PCB design

Stackup:

- o I-Tera MT40
- o 1067 weave

Impedance:

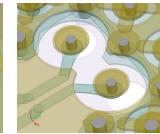
- o 90 Ohm package / 50 Ohm single ended coax cables
- ➢ 92 Ohm BGA escape and open routing
- Routing:
 - Two routing layers (RX, TX)
 - o Short TX traces, 11 mm
 - o Board rotation to mitigate periodic fiber weave effects

	Calc			
Layer	Thickness	Primary Stack	Description	Dk / Df
Layer - 1	0.0010 0.0026		Taiyo 4000-MP 1/2oz Mix (Std Plt)	3.60 / 0.0190
	0.0050	0.0050 (2-1067)	I-Tera MT40	3.17 / 0.0023
Layer - 2	0.0006		1/2oz Sig	
	0.0052	1067 - 76%	I-Tera MT40	3.08 / 0.0020
Layer - 3	0.0006		1/2oz P/G	
	0.0050	0.0050 (2-1067)	I-Tera MT40	3.17 / 0.0023
Layer - 4	0.0006		1/2oz Sig	
	0.0052	1067 - 76%	I-Tera MT40	3.08 / 0.0020
Layer - 5	0.0006		1/2oz P/G	
	0.0140	0.0140 (2-2116/1-3313)	I-Tera MT40	3.56 / 0.0033
Layer - 6	0.0006		1/2oz P/G	
	0.0052	1067 - 76%	I-Tera MT40	3.08 / 0.0020
Layer - 7	0.0006		1/2oz Sig	
	0.0050	0.0050 (2-1067)	I-Tera MT40	3.17 / 0.0023
Layer - 8	0.0006	1007	1/2oz P/G	
	0.0052	1067 - 76%	I-Tera MT40	3.08 / 0.0020
Layer - 9	0.0006		1/2oz Sig	
	0.0050	0.0050 (2-1067)	I-Tera MT40	3.17 / 0.0023
Layer - 10	0.0026 0.0010		1/2oz Mix (Std Pit) Taiyo 4000-MP	3.60 / 0.0190

AUGUST 16-18, 2021

Via breakout optimization

- Topology:
 - Top-mounted BGA / Bottom-mounted connector 0
 - CDD and through vias, inherent minimal stubs 0



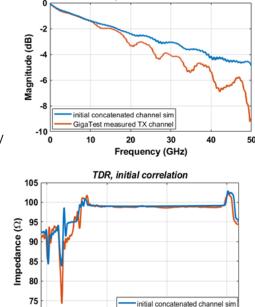
Impedance control:

- Auxiliary ground vias
- Teardrops 0
- Offset ground relief on lower reference plane 0

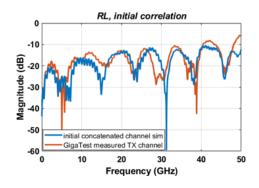
Connector via

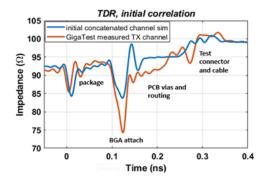
CDD via

Thru via


8

AUGUST 16-18, 2021


Initial simulations and measurements


- Concatenated 4-port channel:
 - Extracted package layout
 - Simulated GL102 dielectrics 0
 - Vias, PCB and cabling simulated separately
- Measurements:
 - Bare-die BGA package
- Miscorrelation:
 - Under-modeled impedance discontinuities
 - Missing resonances in the IL 0

0.5

IL. initial correlation

q

AUGUST 16-18, 2021

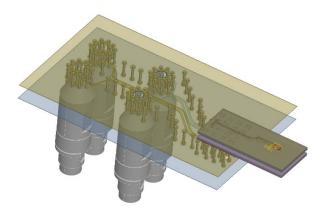
70

0

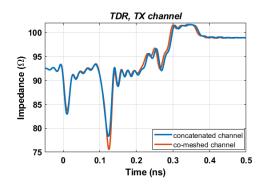
#DesignCor

1.5

GigaTest measured TX channe


1

Time (ns)

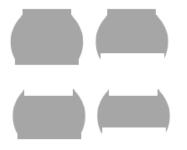

Examining root cause

Deep dive simulation review:

- Package vias
- Package copper roughness
- $\circ~$ PCB thru vias
- o Connector model truncated
- Co-meshed simulation

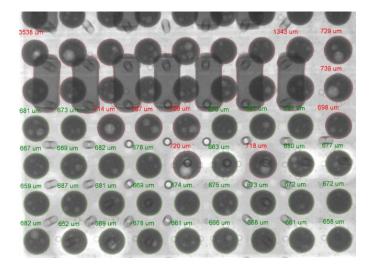
Combined co-meshed simulation model

AUGUST 16–18, 2021


////////

#DesignCor

Key discontinuity = solder attach

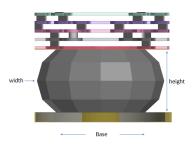

- BGA ball size impact on SI
- Reflowed ball shape predicts TDR discontinuities

Real solder ball shapes

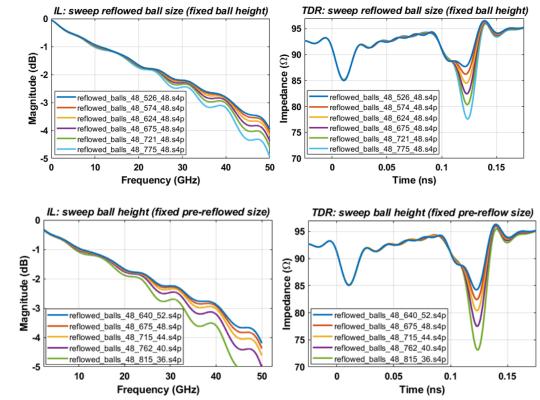
Pre-reflow solder ball

CT-scan of soldered BGA

AUGUST 16-18, 2021


#DesignCon

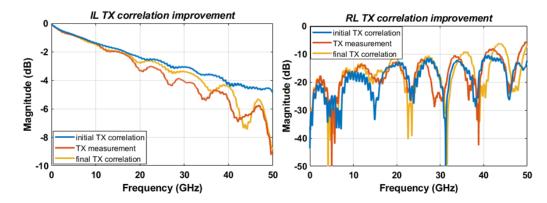
11 🔘

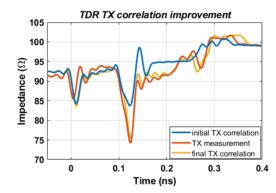


Solder ball model sweep

Reflowed ball size (width) sweep

Ball shape (height) sweep

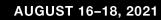



#DesignCon

Improved correlation

- Co-meshed simulation:
 - Trace impedance updates
 - Improved reflowed solder ball model
- Correlation:
 - Still missing some IL resonance at higher frequencies
 - · Ball model approximation
 - Die probe calibration impact
 - Small uncertainty in VNA accuracy

#DesignCor


AUGUST 16-18, 2021

13 (informa markets

OUTLINE

- Optimizing a 112G test channel
- Power delivery network
- Channel performance
- Summary and conclusions

Power delivery

Goals:

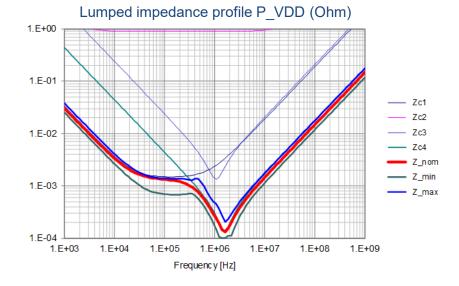
- $_{\circ}$ $\,$ Power the board from single 5V supply
- Provide option to feed each rail from its own supply
- $_{\circ}$ $\,$ Neglect impact of noise on the board PDN $\,$

Net	DC voltage [V]	Max current [A]	Max transient current [A]	Allowed deviation [mV]	Target impedance [mOhm]
P_VDD	0.75	3	1.5	3	2
PA_VDDL	0.75	2	1	2	2
PA_VDDH	1.2	2	1	2	2
P_VDDH	1.8	1	0.5	1	2

Architecture:

 Relatively low current = cascaded linear regulators and jumper selectable supply options.

#DesignCon


AUGUST 16-18, 2021

Capacitor selection

Big-V impedance profile:

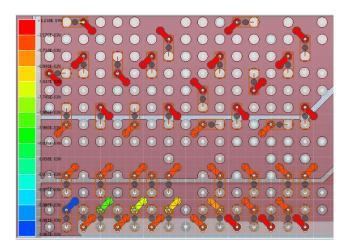
- $_{\circ}$ $\,$ 10 uF 0402 ceramic on back of chip $\,$
 - Single value
 - Directly on power/gnd pins
- 470 uF polymer bulk capacitors help regulator maintain low impedance
- 22 uF ceramic at the output of the regulators for stability

Four parallel capacitor banks	C1	tol. [%]	C2	tol. [%]	C3	tol. [%]	C4	tol. [%]	
Capacitance C [F]:	4.70E-04	20	1.00E-04	20	2.20E-05	20	1.00E-05	20	Fmin[Hz]
		-20		-20		-20		-20	1.E+03
Ser. resistance ESR [ohms]:	0.015	0	0.9	0	0.004	20	0.005	20	Fmax[Hz]
		-50		-50		-20		-20	1.E+09
Ser. inductance ESL [H]:	3.00E-09	20	5.00E-09	20	1.00E-09	20	1.00E-09	20	
		-20		-20		-20		-20	Total:
Number of parts in bank	10		1		3		36		50

#DesignCor

AUGUST 16-18, 2021

16 (informa markets


PDN analysis

Optimize DC-drop

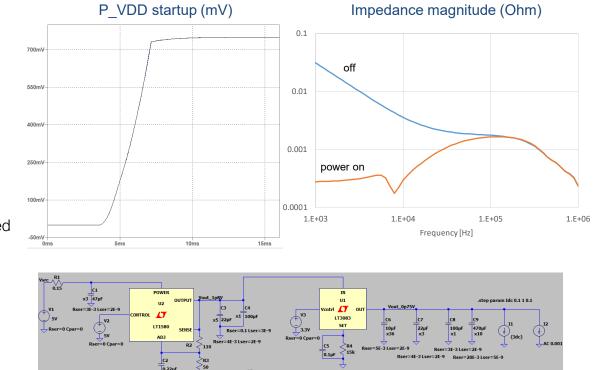
- $_{\circ}$ 1 oz copper power layers
- $_{\circ}$ $\,$ Hybrid solder iteration to optimize shape size

Minimize rail-to-rail crosstalk

- Avoid overlap between power planes of different nets.
- Especially analog vs digital nets

Net	DC voltage	Max current	Max DC	Max rel. DC
	[V]	[A]	drop [mV]	drop [%]
P_VDD	0.75	3	5.1	0.68
PA_VDDL	0.75	2	4.3	0.57
PA_VDDH	1.2	2	8.1	0.675
P_VDDH	1.8	1	0.53	0.03

#DesignCon



AUGUST 16–18, 2021

PDN analysis

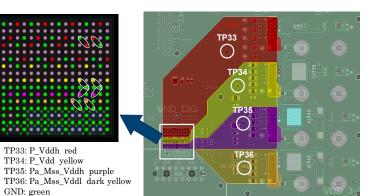
Spice simulations

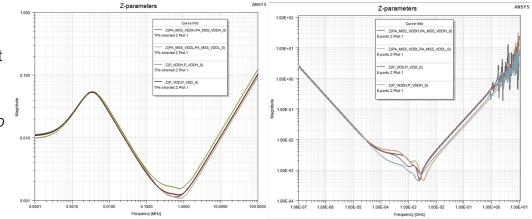
- $_{\circ}~$ Vendor supplied models and simulator
- Simulated startup behavior to ensure stability of cascaded regulators
- Simulated output impedance with lumped external components

.ac dec 100 100 1E7

AUGUST 16-18, 2021

#DesignCon


18 (informa markets


PDN analysis

- AC impedance simulations
 - Dedicated test points and chip's pin field location
 - Mimicking two-port shunt-through measurement

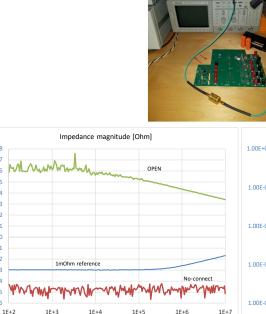
Two scenarios:

- Voltage regulator output open (right)
- Series R-L element mimicking regulator output impedance (left)
 - Equivalent inductance intentionally high to see bulk capacitance impedance

AUGUST 16-18, 2021

#DesignCon

19 (informa markets


Measurements and correlation

Measurements:

- VNA with common-mode toroid suppresses cablebraid ground-loop error
- Home-made semirigid probes
- 100 Hz 10 MHz measurements with and without power applied

Miscorrelation:

- DC resistance above 10 mOhm
 - Selection jumpers simulated with zero resistance
 - Not shown jumpers were shorted with solder
- Impedance peak at 12 kHz around 100 mOhm with minimum load current

Frequency [Hz]

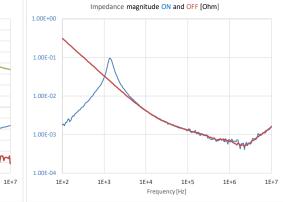
1.00E+08

1.00F+07

1.00E+06

1.00E+04 1.00E+03 1.00E+02

1.00E+01


1.00E+00

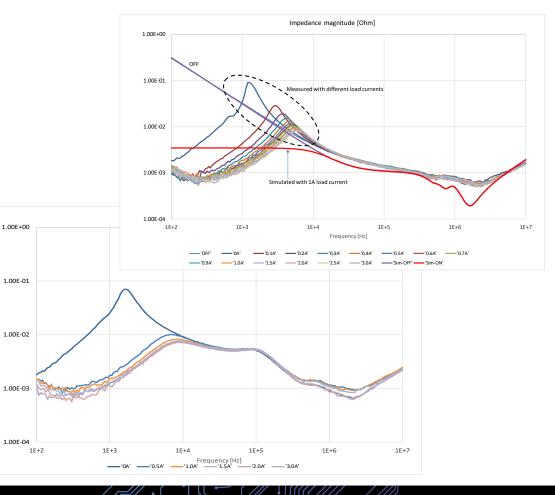
1.00E-01 1.00E-02

1.00E-03 1.00E-04

1.00E-05 1.00E-06 - E4 . E4 64

AUGUST 16-18, 2021

#DesignCor



Root cause analysis

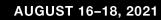
- Investigation:
 - Disabled upstream regulator
 - Added lossy bulk capacitors
 - Altered the regulator's feedback circuit
 - Measured evaluation board of regulator

Improvements:

- Updated regulator model's closed loop bandwidth
- BOM change, higher ESR bulk capacitor

#DesignCor

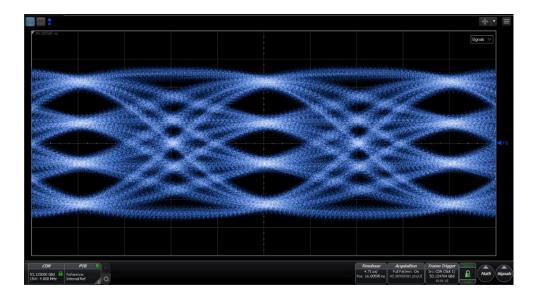
AUGUST 16-18, 2021


21

(informa markets

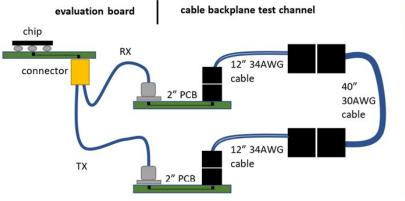
OUTLINE

- Optimizing a 112G test channel
- Power delivery network
- Channel performance
- Summary and Conclusions

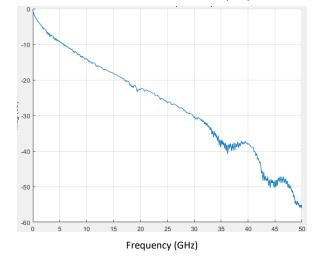


Channel performance

- Clean transmitter PAM4 eye diagram at 106.25Gbps
- Sampling scope with de-embedding tool

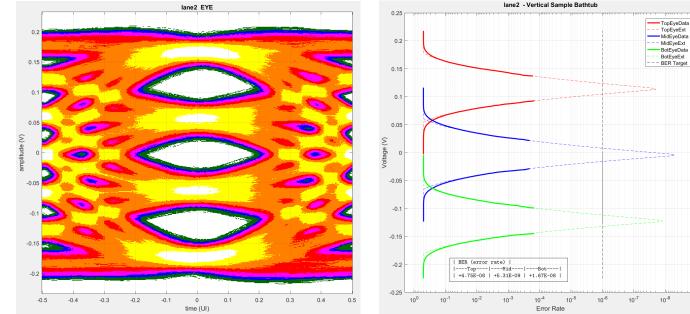


#DesignCor

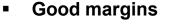


Channel performance

Cable backplane test channel


Cascaded channel IL (dB)

#DesignCon


Channel performance

Receiver eye diagram

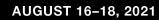
BER curve

#DesignCon

BER << 1e-4

10-

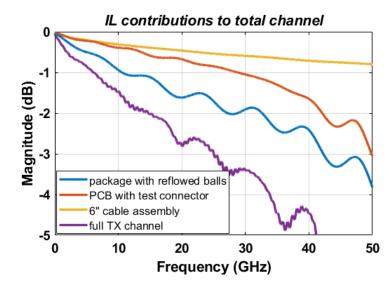
AUGUST 16-18, 2021


25

informa markets

OUTLINE

- Optimizing a 112G test channel
- Power delivery network
- Channel performance
- Summary and Conclusions


Summary and Conclusions

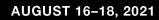
Successful design enabling 112G-PAM4 silicon evaluation

- $_{\circ}$ $\,$ Low insertion loss TX and RX design
- Clean power distribution
- Good channel performance

Important learnings

- o Under-modeled loss contribution of the package
- BGA package attach cannot be neglected for high data rates
- $_{\circ}$ $\,$ Testing power converters prior to design

#DesignCor


AUGUST 16-18, 2021

27 🔘

Thank you!

QUESTIONS?

#DesignCon

informa markets