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 PDN measurements require probing of DUT

 No techniques for avoiding 3D PDN measurement artifacts in 

electrically dense regions (BGA, pin-field, mechanical constraints, etc.)

 Calibration does not remove via-trace coupling from DUT landing 

geometry

 De-embedding these artifacts in postprocessing requires S11 and S22 

data which are notoriously unreliable in PDN measurements

 Hybrid field solvers approximate local details (e.g. vias, traces, 

antipads)

 These parasitic measurement coupling effects must be investigated 

and understood for proper removal from measurement data

3D PDN Measurement Artifacts

10

Bottom

Top

Bottom

Top



Information Classification: General

 3D PDN Measurement Artifacts

 PDN Measurement Background

 PDN Simulation Background

 Measurement Setup

 Copper Sheet Investigation

 Customer Board Investigation

 Test Board Investigation

 Conclusion

Outline

11



Information Classification: General

 Two Port Shunt-Thru Measurement

 Transmission measurements have greater dynamic range than reflection 

measurements

 Probe series parasitics are suppressed with this strategy

 Z21 can be extracted from S21 measurement with approximation

 More complete description of DUT can be obtained with [S] >> [Z] 

transform having T-network configuration

 Requires S11 and S22 measurements which will be inaccurate

 Enables removal of series parasitics

 Does not remove mutual coupling within PCB launch area

PDN Measurement Background
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 Probe landing geometry has coupling factor, 𝒌𝒌:

 Power/GND via pair inductive loop, LP

 Plane inductance between via launches, LG

 ZC will include term from via coupling 

 Coupling term will grow with frequency and can mask DUT impedance

 Minimize term by reducing PWR/GND probe tip distance, reducing LP

 Minimize term by putting probe1 and probe2 close together, reducing LG

 Maximizes contribution from coupling between probes, themselves

 LP and LG are not easy to isolate

 Two port shunt through measurement good at removing series parasitics

 Consider probe landing via pads and vias as extension of DUT that can be de-embedded 

to port centered between them

 Post-processing step after standard two port shunt thru measurement to remove launch 

parasitics and isolate 𝑍𝑍𝐷𝐷𝐷𝐷𝐷𝐷

PDN Measurement Coupling
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 Electrical parameters defining DUT need to be captured in simulation setup (e.g. stackup dimensions, 

plating thicknesses, dielectric constant, conductivity, etc.)

 Hybrid EM solvers commonly used for PDN simulations

 Decompose the DUT into plane modes, transmission line modes, and localized discontinuity 

models (e.g. vias and padstacks)

 Study of detailed localized behaviors may require 3D EM extraction

 Be careful about assumptions in full wave solver for low frequency, low frequency stability 

settings and volumetric conductor mesh can be used

 Quasi-static solver may be more appropriate for PDN studies

 Careful studies of meshing and convergence should be completed when investigating these 

low impedances 

 Low frequency characterization challenging

 Full bulk current conduction mode when conductor thickness < 2x 𝜹𝜹

 𝒇𝒇 current flow scaling when conductor thickness > 5x 𝜹𝜹

PDN Simulation Background
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(35um ~1oz copper)
The bulk conduction region is over a 75MHz wide band (14MHz –
89MHz) and is typically where low PDN impedance is designed.

Skin region

Bulk region

Transition region
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 PDN impedance measurements commonly completed with VNAs using two port shunt 

thru configuration

 Common mode choke used in path of port 2:

 Ferromagnetic materials sensitive to AC bias and Port 2 sees little AC bias in 

S21 measurement 

 Emphasized aligning probes robustly as coupling sensitive to small changes in 

measurement geometry

 Probes with three different tip configurations investigated as loop area directly impacts 

coupling

 Probe spacing and landing angle measured precisely

 45 degree landing angle used due to probe protection sleeve and optical vision 

system in use

 Preliminary measurements taken to validate setup

Measurement Setup
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(Left) Deflection of light shows probe touchdown.  (Right) 
Mylar sheet supplied with probes confirm alignment.

1mm pitch

1mm pitch

GND Blade

0.5mm pitch

Three different probe types were investigated.

(Left) probe landing spacing measured.  (Right) 45 degree 
probe landing angle used.
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 Simulations include both probes on top-side of 5mm x 5mm 1oz copper sheet 

with 1mm pitch

 Probe models parameterized

 Probe models constructed of Beryllium with 2.5e7 S/m (43% of copper’s 

conductivity)

 Quasi-static solver

 Probes 1 and 2 each had a source on center probe tip and GND ring 

while sink included on opposite side of copper sheet

 Surface roughness not modeled

 Full-wave 3D field solver 

 Impedance measurement and simulation consistent across six probe landing 

permutations suggesting T-network transform being performed correctly

 Correlation between impedance measurements, quasi-static 3D solver, and 

full-wave 3D field solver show good agreement in inductance but mismatch in 

lower frequency, resistive region

Copper Sheet Investigation
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(Left) probe configuration setup and (Right) Impedance measurements and 
full-wave 3D field solver results across six permutations of 1mm probe 

configurations landed on the copper sheet.

Impedance measurements, quasi-static 3D solver results, and full-wave 3D field 
solver results for “straight” probe orientation and “flipped” probe orientation.
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 12 Layer customer board for a high speed chip with 1mm pitch BGA field

 Probes are flipped and offset

 ECAL and wafer probe cal measurements without isolation lie on top of one another

 Wafer probe coupling with isolation shows higher inductance because probe tip coupling is removed

 Flipped probe coupling reduces effective inductance

 Hybrid solver predicts inductance between wafer cal measurement results with isolation and without isolation

Customer Board Investigation
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 Test board having 20 layers, 5 PWR-GND cavities

 Blind via arrays cut away from rest of board (J0401)

 Via array has alternating checkered board PWR-GND pattern

 Entire area of J0400 shorted for corresponding measurements

Test Board Investigation
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Test Board top-side view.

Blind via array under test.Port landing 
configuration 
on via array 
with port 
location to 
which we de-
embed DUT 
denoted in blue.

L1

L2

L3

Through
Via

Test board stackup cross section.
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 3D FEM solver setup with ports at connector models 

mimicking ECAL setup with third port at center region

 3D FEM solver setup with lumped ports at landing pads 

mimicking wafer probe substrate calibration with third port 

at center region

 Hybrid EM solver setup with ports at landing pads 

mimicking wafer probe substrate calibration with third port 

at center region

 Reasonable agreement between simulated and measured 

resistance and inductance

 Resistance varies as a function of extraction method and 

port location

Test Board Investigation
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𝑍𝑍𝐶𝐶
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 Inductance extraction from measurement not discernable 

at frequencies below 1MHz

 Results from the different EM simulators agree well with 

greatest variation in inductive region

 3D FEM model with full 3D probe models expect to best 

capture physical behavior because coupling captured is 

physical

 Placing lumped ports in the pads may result in coupling 

between ports due to their physical closeness

Test Board Investigation
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𝑍𝑍𝐶𝐶
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Information Classification: General

 Buried ports show slightly higher inductance than external ports

 Buried port shows higher resistance compared to external ports

 For both ECAL and wafer cal, measurement and simulation results show good correlation up to 10MHz

 Best correlation between measurements and 3DFEM simulation results with lumped ports placed 

directly on pads

 ZC from ECAL and wafer cal measurement setups show good agreement implying coupling from probe-to-

probe or probe-to-substrate does not influence the results significantly

 Expected to get worse in higher frequency range, when probing through vias buried deep in the 

stackup, or when probing in tighter pitch BGAs 

 Next steps include continuing this investigation into higher frequencies

 Next steps include investigating improvements to measurement and simulation setup for better agreement

 Next steps include investigating de-embedding of measurement artifacts

Test Board Investigation
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 Traditional VNA calibration does not remove the effects of coupling between the DUT via-trace structures while measuring PDN impedance with probes in close 

proximity.

 This coupling can mask a low DUT impedance in measurement if not de-embedded

 Simulation engine selection needs to be considered carefully for good measurement correlation

 The isolation calibration step of the typical VNA calibration flow does not provide complete removal of the coupling effect.

 Probe spacing, offset, orientation and landing angle all heavily influence probe-tip coupling and therefore are all important parameters to be kept the same during 

calibration and measurements.

 With the geometries we examined, we achieved good correlation between impedance simulation and measurement

 Next steps include:

 Investigating measurement and simulation setups for better correlation between t-network transformed shunt impedance, ZC

 Investigating de-embedding of measurement artifacts further for improved correlation between t-network transformed shunt impedance, ZC, from external 

ports and buried port impedance

Conclusion
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 Sensitivity analysis completed to identify high priority parameters to include when 

modeling probed measurement of DC resistance

 DC resistance of simulated structure function of:

 Sheet thickness (TH): [10mil, 23mil]

 How deep probe goes into the copper (probe offset, OFF):  [10um, 

30um]

 Surface roughness of the copper:  Nodule radius [2um, 6um]

 min
TH,OFF,NR

𝑹𝑹𝑹𝑹 𝒁𝒁𝑪𝑪,𝑺𝑺𝑺𝑺𝑺𝑺. 𝒇𝒇 = 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏, TH, OFF, NR − 𝟏𝟏.𝟒𝟒𝟏𝟏𝟒𝟒𝑺𝑺𝛀𝛀

 0.407mOhm measured impedance with straight probe orientation at 

100Hz

 Cost function has highest sensitivity to sheet thickness variation

 Optimizing values are:

 TH = 10mils (minimum value of range)

 OFF = 10um (probe barely touching)

 Surface Roughness NR =6um (maximum value of range)

Sensitivity Analysis
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 Copper sheet used as first DUT [15.6mm x 

31.5mm x 0.25mm]

 Stresses measurement setup’s low impedance 

measurement capabilities and cable braid error 

mitigation

 𝑹𝑹𝟐𝟐𝟏𝟏 ∝ 𝟏𝟏/𝒅𝒅𝟐𝟐 d is spacing between probes

 Current distribution out of positive 

probe 1 tip returning to negative 

probe 2 tip falls off as probe 2 moves 

away from probe 1

 Results in voltage excitation at probe 

2 due to current at probe 1 falling off 

as probe 2 moves away from probe 1

Copper Sheet Investigation
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𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑅𝑅𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑠𝑠𝐶𝐶𝐶𝐶𝑔𝑔

𝑅𝑅𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑠𝑠𝐶𝐶𝐶𝐶𝑔𝑔
𝐼𝐼1 𝐼𝐼2

𝑉𝑉2𝑉𝑉1

(Left) Probe landings for copper sheet impedance measurement.  
(Right) Equivalent circuit for probe landing configuration.

(Left) Current density plot of two port shunt thru measurement on copper sheet. (Right) Resistance between probe tips 
for 500um and 1000um pitch.  d/a is the ratio between the probe distance, d, and contact area of the probe points, a.
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