ARIES: Using Annular-Ring Embedded Resistors to Set Capacitor ESR in Power Distribution Networks

Valerie St. Cyr*, Istvan Novak*, Nick Biunno**, Jim Howard**

* SUN Microsystems, Inc.
One Network Drive, MS UBUR03-205, Burlington, MA 01803
Tel: (781) 442 0982, fax: (781) 442 1575

** Sanmina/Hadco
445 El Camino Real, Santa Clara, CA
Tel: (408) 557 7546, fax: (408) 557 7800
Outline

• Introduction
• Distributed Matched Bypassing
• Annular Buried Resistor
• ARIES
• Test board performance
• Implementation
• Conclusions
Dictionary

- DMB = Distributed \textit{M}atched \textit{B}ypassing
- ABR = \textit{A}nnular \textit{B}uried \textit{R}esistor
- ARIES = Annular \textit{R}esistive \textit{I}nterstitial \textit{E}lement, \textit{S}creened-in
Distributed Matched Bypassing (1)

\[R_1 = R_2 = \sqrt{\frac{L_2}{C_1}} \]

\[\log Z \]

\[\log f \]

\[(\omega C_1)^{-1} \]

\[\omega L_2 \]

\[f_{23} \]

\[f_{12} \]

power source

first capacitor bank

second capacitor bank

DET

EAVP

AVP

St. Cyr, Novak, Biunno, Howard

EPEP, October 2001
Distributed Matched Bypassing (2)

- Elements:
 - Power-ground planes over (thin) laminate
 - A small number of \textit{SAME VALUE} capacitors (2.2UF IDC)
 - Few bulk capacitors
- Controlled-ESR capacitors
- Smooth impedance profile
- Suppresses plane resonances, and
- Avoids antiresonances among
 - Capacitors, and
 - Capacitors and planes
Distributed Matched Bypassing (3)

- **Conventional** designs use C, ESR and ESL. Resonances depend on all three:
 - Hard to simulate all combinations
 - ESR for present capacitors cannot be specified

- **DMB** relies on a user-defined series resistance (ABR) of bypass capacitors:
 - Lowest number of capacitors
 - Straightforward positioning
 - C and ESL variations matter much less
 - Fewer combinations -> more predictable result
 - Components are equal -> increased reliability

>> shared dissipation
ABR
Annular Buried Resistor
ARIES
Annular Resistive Interstitial Element, Screened-in

Eight-terminal capacitor

- Blind vias
- 130-180pH loop inductance

Top metal layer
GND layer
PWR layer

Printed resistors
Test Board

- 10”x5” outline
- 2 pairs of 2-mil cores
- 1” square grid test points (PTH)
- Offset 1” square grid for ARIES
Test Board Impedance Log-Log

Impedance magnitude [ohm]

- No-R
- With-R
- Bare

Self impedance
2”x2” from corner
Test Board Impedance Lin-Lin

Impedance magnitude [ohm]

Self impedance
2”x2” from corner
Implementation

<table>
<thead>
<tr>
<th>number of caps</th>
<th>304</th>
</tr>
</thead>
<tbody>
<tr>
<td>caps area [sq inch]</td>
<td>4.1288</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>number of caps</th>
<th>94</th>
</tr>
</thead>
<tbody>
<tr>
<td>caps area [sq inch]</td>
<td>0.9664</td>
</tr>
</tbody>
</table>
Conclusions

• Smooth, optimum impedance profile is achieved by DMB (AVP, EAVP, DET)
• DMB requires user-defined ESR
• ABR is used to add series resistance to (ceramic) capacitors
• ARIES implementation:
 • 130-180pH ESL
 • 1-1000MHz coverage
Impedance profile in ohms of 10”x5” 2x2-mil plane pairs with 26x2.2uF capacitors with 0.72-ohm ARIES at 100kHz

Istvan Novak, October 2001
Impedance profile in ohms of 10”x5” 2x2-mil plane pairs with 26x2.2uF capacitors with 0.72-ohm ARIES at 150kHz

Istvan Novak, October 2001
Impedance profile in ohms of 10”x5” 2x2-mil plane pairs with 26x2.2uF capacitors with 0.72-ohm ARIES at 200kHz
Impedance profile in ohms of 10”x5” 2x2-mil plane pairs with 26x2.2uF capacitors with 0.72-ohm ARIES at 300kHz

Istvan Novak, October 2001
Impedance profile in ohms of 10”x5” 2x2-mil plane pairs with 26x2.2uF capacitors with 0.72-ohm ARIES at 500kHz

Istvan Novak, October 2001
Impedance profile in ohms of 10”x5” 2x2-mil plane pairs with 26x2.2uF capacitors with 0.72-ohm ARIES at 750kHz
Impedance profile in ohms of 10”x5” 2x2-mil plane pairs with 26x2.2uF capacitors with 0.72-ohm ARIES at 1MHz
Impedance profile in ohms of 10”x5” 2x2-mil plane pairs with 26x2.2μF capacitors with 0.72-ohm ARIES at 1.5MHz

Istvan Novak, October 2001
Impedance profile in ohms of 10”x5” 2x2-mil plane pairs with 26x2.2uF capacitors with 0.72-ohm ARIES at 2MHz

Istvan Novak, October 2001
Impedance profile in ohms of 10”x5” 2x2-mil plane pairs with 26x2.2uF capacitors with 0.72-ohm ARIES at 3MHz

Istvan Novak, October 2001
Impedance profile in ohms of 10”x5” 2x2-mil plane pairs with 26x2.2uF capacitors with 0.72-ohm ARIES at 5MHz

Istvan Novak, October 2001
Impedance profile in ohms of 10”x5” 2x2-mil plane pairs with 26x2.2uF capacitors with 0.72-ohm ARIES at 7.5MHz
Impedance profile in ohms of 10”x5” 2x2-mil plane pairs with 26x2.2uF capacitors with 0.72-ohm ARIES at 10MHz

Istvan Novak, October 2001
Impedance profile in ohms of 10”x5” 2x2-mil plane pairs with 26x2.2uF capacitors with 0.72-ohm ARIES at 15MHz

Istvan Novak, October 2001
Impedance profile in ohms of 10\"x5\" 2x2-mil plane pairs with 26x2.2uF capacitors with 0.72-ohm ARIES at 20MHz

Istvan Novak, October 2001
Impedance profile in ohms of 10”x5” 2x2-mil plane pairs with 26x2.2uF capacitors with 0.72-ohm ARIES at 30MHz
Impedance profile in ohms of 10”x5” 2x2-mil plane pairs with 26x2.2uF capacitors with 0.72-ohm ARIES at 50MHz

Istvan Novak, October 2001
Impedance profile in ohms of 10”x5” 2x2-mil plane pairs with 26x2.2uF capacitors with 0.72-ohm ARIES at 75MHz

Istvan Novak, October 2001
Impedance profile in ohms of 10”x5” 2x2-mil plane pairs with 26x2.2uF capacitors with 0.72-ohm ARIES at 100MHz
Impedance profile in ohms of 10”x5” 2x2-mil plane pairs with 26x2.2uF capacitors with 0.72-ohm ARIES at 150MHz.
Impedance profile in ohms of 10”x5” 2x2-mil plane pairs with 26x2.2uF capacitors with 0.72-ohm ARIES at 200MHz
Impedance profile in ohms of 10”x5” 2x2-mil plane pairs with 26x2.2uF capacitors with 0.72-ohm ARIES at 300MHz

Istvan Novak, October 2001
Impedance profile in ohms of 10”x5” 2x2-mil plane pairs with 26x2.2uF capacitors with 0.72-ohm ARIES at 500MHz
Impedance profile in ohms of 10”x5” 2x2-mil plane pairs with 26x2.2uF capacitors with 0.72-ohm ARIES at 750MHz

Istvan Novak, October 2001
Impedance profile in ohms of 10”x5” 2x2-mil plane pairs with 26x2.2uF capacitors with 0.72-ohm ARIES at 1000MHz