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Abstract
A complete derivation of inductance from energy relations is presented, outlining all the key steps and assum
Based on this derivation, the concept of partial inductance is reviewed and several useful expressions for
inductance are presented. The accuracy of these expressions is then evaluated by comparing these formula t
solutions and measurement data of test structures. 

Theoretical Background
Equations for inductance can be derived using anyone of several alternative methods. Here we derive a gene
mula for inductance from energy relations. From Poynting’s Theorem the energy stored in a magnetic field ca
written as

(1)

From circuit theory the energy stored in an inductor is given by

(2)

Equating these two definitions and solving for L gives

(3)

The vector magnetic potential A can be defined such that

(4)
Substituting (4) into (3) gives

(5)

A standard vector identity is

(6)
Using this on equation (5) gives

(7)

Applying the divergence theorem and substituting Ampere’s law in differential form (under quasi-static conditi
gives

(8)

Since the volume integration is over all space, the surface enclosing this volume is at infinity. Applying the bou
condition that the magnetic field intensity H must be zero at infinity, the left hand term vanishes. Note that if the c
rent itself were assumed to return at infinity the magnetic field could not be zero at infinity. The volume curren
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 (12), 

 
han the 
sity J is zero outside of the conductor and therefore the bounds of integration for the right hand integral are o
volume bounded by the conductor. The vector magnetic potential A for a volume current is defined as

(9)

where Rij  is the distance vector from the line element dl to the field point. Substituting (9) into (8) yields

(10)

This is the most general formula for calculating the self and mutual inductance for a given problem definition.
(10) the inductance can be calculated for two loops, i and j (see Figure 1). If the loops are assumed to have a
current density Ji and Jj , and constant cross-sectional area, ai and aj, the following substitutions can be made 

 and . Equation (10) can then be rewritten as   

 (11)

For loops that are thin filaments, the current density disappears for places off the line contour and Neumann’s 
is obtained

 (12)

By rewriting the integrations over the lengths as summations over segments of the loop the partial inductance 
is introduced [1]

(13)

where loop i is divided into K segments and loop j is divided into M segments. The line integral is then calcula
each segment over the geometry of each segment in free space. This integration will be well defined for a pa
problem definition and produces a unique partial inductance value for a given segment geometry. 

Closed-Form Expressions for Partial Inductance of Vias
Closed-form expressions for the partial inductance can be obtained from Neumann’s formula. Rosa derived a
expression for the partial mutual inductance between two thin filaments of length h and separation d from Neumann’s 
formula [2]. The geometrical relation of the filaments is shown in Figure 2. Inserting the problem definition into
the integral to be solved is

(14)

Solving the double integration in (14) produces

(15)

where the units of (15) are in pH and the dimensions are in mils. The partial self inductance can be calculated using
(15) with the separation of the filaments equal to the conductor radius. If the filament length is much greater t
filament separation, (15) can be shown to reduce to the following expression for partial inductance
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Figure 3 plots the partial self inductance calculated using (15) and (16) for a via that is 10 mils in diameter as
tion of length. These results are compared to 3D field solution using Ansoft Q3D. As expected, (16) produces
physical results (negative inductance values) when the aspect ratio of the conductor approach unity. Excellen
ment is obtained using (15) over a wide range of conductor aspect ratios. The largest discrepancy is observed
conductors when the port definitions in the field solver becomes increasingly important in order to obtain accu
partial self inductance values.

Via Modeling Considerations
In general, accurate modeling of vias for PCB applications requires that the partial self and partial mutual indu
are included for all the vias. However accurate, there is a huge computational penalty to this approach. For e
10 vias would require 55 elements. The number of elements can be significantly reduced by capturing the pa
inductances only. An approach to assessing the inaccuracy introduced by this simplification was presented in

Via Inductance Measurement Considerations
When attempts are made to measure the inductance of a single, stand-alone via, the measuring instruments/
create a closed loop around the via (Figure 4). To reduce the contribution of this uncertainty, a pair of vias can
nected in a loop by a plane. Through calibration, the portion of loop inductance created by the finite probe pit
removed. As long as the coupling among the four sides of this loop is negligible, and assuming that the horizo
plane-connection inductance can be neglected compared to the via inductances, the measured loop inductan
a good approximation of the sum of the two partial self inductances of vias.

Measurement Results
Figure 5 shows the uncertainty associated with the removal of the probe-tip inductance. The graph shows the
ance reading after a full two-port calibration on adjacent tracks of GGB calibration substrate (20-mil distance 
between tracks), on the same tracks (labeled 20-mil) and tracks with 150-mil separation. The 20-mil separatio
an approximately 4 pH inductance. Figure 6 shows the measured impedance and extracted inductance of two
long 22-mil diameter vias with 50-mil center-to-center separation. The partial inductance obtained from 3D fie
solution and equation (15) are within 20% of the measured inductance.
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Fig. 1: Two coupled loops, i and j.

Fig. 3: Via partial inductance as a function of length.

Fig. 5: Probe calibration reading on shorts.

Fig. 2: Two filamentary conductors.

Fig. 4: Closed loop created by probe.

Fig. 6: Measured impedance magnitude and equivalent 
inductance of a via pair shorted by a solid plane
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