Reducing Simultaneous Switching Noise on Power Planes by **Dissipative Edge Termination** Norkaroup Servers Board Design

Technology

October 1998

1

EPEP'98: DET

I. Novak, SUN Microsystems

DET Design Flow

Collect input data:

- Identify required impedance: Z, BW_t
- Identify plane dimensions {w₁, w₂, w=sqt(w₁*w₂)}, F_{res}, ε_r
 Design DET:
- Calculate plane-pair height (and/or # of planes) from BW_t, $\epsilon_{r_{,}}$ by rearranging: Z < Z_{plane} = 120^{*} π *h/{w* sqt(ϵ_{r})}
- Calculate component separation: s < c/{10*BW_t*sqt(ε_r)}
- Calculate R_t to match unit cell with size 's'
- Calculate C_t from $f_{res} < 1/\{2^*\pi^*R_t^*C_t\}$

7

Workgroup Servers

echnoloav

EPEP'98: DET

I. Novak, SUN Microsystems

- Straightforward design methodology
- Smooth impedance profile
- Lower DM edge radiation
- Low component count
- Inner area of board is freed up ۲
- Along edge easier to provide low-L connection
- Possible implementation with integrated passives ۲
- Not sensitive to

EPEP'98: DET

- component tolerances
- placement tolerances
 - DET in itself will not lower the impedance of planes
- BUT... Planes must be 'good' to start with

8

Not just the peaks are reduced, but valleys are filled

I. Novak, SUN Microsystems

October 1998

DET, Features

Measured and Simulated Self Impedance

Self impedance at center node

Log magnitude of impedance [ohm]

- 10" x 10" x 31mil FR4 with DET
- Measured with HP8720C VNA
- Simulated with 1-inch grid at center node:

Freq [Hz]	Zmagn[ohm]	0.25		
1.00E+08 (0.3143	0.23	Measu	red
1.58E+08 (0.4413	0.025		
2.51E+08 (0.6574		Simulated	
3.98E+08	1.233		Connulated	
6.31E+08	1.744		og frequency [Hz]	
1.00E+09 2	2.645			
		50M 100M	0.5G 1G	5G
			Workg	roup Servers
			Sin Board	d Design
EDED'08: DET 0 I. Novak, SUN Microsystems Technology				
October 1998				

2.5

Conclusions

- Unterminated or short-terminated planes resonate
- Dissipative edge termination

EPEP'98: DET

- reduces peaks in DM radiation

11

reduces peaks in self- and transfer impedances

October 1998

Bypass design is straightforward with DET

Workgroup Servers

Board Design Technology