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- Compare single point-of-load PDNs and PDNs feeding multiple parallel loads
- Correlate bandwidth changes from the DC source pads to IC pads on the PCB
- Present guidelines to avoid over-designing PDNs

- Understand considerations for complex, multi-load power delivery designs

- Update PDN target impedance methodology to be a function of frequency and spatial position



TARGET IMPEDANCE

Pl design target for systems:
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POL AND MULTI-LOAD PDN LADDER MODELS

- POL PDN and two-load PDN

- Transient current at die-level of PDN (Cadence SystemPI®) is filtered by die-package resonances and
PCB impedance before appearing on the board or at neighboring die
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DEVICES UNDER TEST

- DUT1: POL, 250A Al application
30-layer stackup, 3 power layers, half of layers GND
BGA: 430 pwr pins, 1400 GND pins
500 decoupling caps, 5 different values
<0.25nH net inductance seen by IC
<1mOhm impedance 10kHz - 3MHz (seen looking into pcb BGA)

Same Layer
Decoupling

DUT1

Backside
Decoupling

POL converter

- DUT2: Multi-load, high-computing application Y Do Hore
32 DIMM sockets driven by 16 memory driver chips, split into 4 power planes, each with
80A DCDC converter
28-layer stackup multiple 20z power layers
8x 1000uF, 27x 330uF by VR
40x 47uF near DIMM sockets
238x 4.7uF near memory controllers

DUT2

1 VRM | Decoupling | ASICs
Mounted, not powered Mounted Not mounted

DUT2 Mounted, not powered Mounted Mounted




MEASUREMENT SETUP

- Keysight E5061B VNA, 2-port shunt thru measurement configuration

- PacketMicro RP-GR-121510 probes and positioner

- Microscope
- Common mode choke toroid for use up to 10MHz

« SOLT calibration (including Isolation) to end of cables.

- Landing probes not de-embedded
« +/-40pH - 50pH mutual probe-tip loop inductance @1MHz @1mm

Negligible phase rotation from probes in this frequency range [7]

YORA SR Ee s
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- 10dBm source power

[7] Impact of Finite Interconnect Impedance including Spatial and Domain Comparison of PDN Characterization

(DesignCon 2024)
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NOISE FLOOR INVESTIGATION

’ 5HZ ”:BW Impedance magnitude [Ohm]
1.00E-01
- 10dBm source power
) 1.00E-02
- No averaging
1.00E-03
« SOLT calibration (including Isolation)
1.00E-04
- No external active device
: : : o \U Wy I \ \r’/\"»n‘/’ YAAlA 2
- DUT data shown in this paper used this setup (| ﬂ" H l‘”'"\‘ "I A |- " \"“\""V
1.00E-06
- <1uQ noise floor achievable! .
' 1E+2 1E+43 1E+4 1E45 1E+6 1E+7
< 10pQ noise floor Frequency [Hz]

——SHORT-SHORT =~ ——SHORT-SHORT-THRU = ——32u0hm  ——1mOhm
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CADENCE POWERDC® S=milee

All pins draw equivalent current

Forced equipotential at pins

Investigations into spatial filtering:

Equipotential Load vs. Equivalent Current
Distribution

- All power pins draw equivalent amount of current
- l|deal forced equipotential on BGA power pins

«  Uniform voltage supplied at BGA

« Current is purely function of path resistance

« 3xincrease in max current per pin nearest POL

Voltage gradient layer below device

Device current distribution at pins
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CADENCE POWERSI® sSamlec

Simulation Setup:

Hybrid solver

Wanted to see what quality correlation achievable with this faster simulator
versus full 3D simulator used in [7].

Capacitor modeling:
S-parameter models used where available from vendors

R-L-C models used where satisfactory vendor s-parameter models were not
available

[7] Impact of Finite Interconnect Impedance including Spatial and Domain Comparison of PDN Characterization
(DesignCon 2024)
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MEASUREMENT TO POWERSI SIMULATION CORRELATION

- Self-impedance — to — transfer impedance

- N2 region simulations and measurements as pin spacing between probe landings is
increased [8]

- As probes separate: Capacitance (no change), resistance (\/), inductance ()

Measured Data: Simulated Data: )

10-2 1

. R Same Layer
1072 T % LR AR B .
LSRN / g Decoupling

(@ |zl

Backside
Decoupling

li i POL converter
Down Here

[8] Determining the Requirements, Die vs. Package vs. Board: Multi-level PDN Design (DesignCon 2025)
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POWERSI SIMULATION CORRELATION

- Capacitance: consistent between all datasets B
- No variation expected or seen due to variation of observer %1;“9“95,,”“,“,“M”,M,Ma,,“”““u
- Inductance:
« Highest in self-impedance cases
- Larger disagreement between simulated and measured data due to probe tip
coupling MINNE
« Probe tip coupling falls off as probes separate MAXTAZYRRNAN NEESIINEERI |
; SXLAMRAETIEEAREEXTELIVERINRETY
- Little difference between the different self-impedance cases, likely due to
decoupling on the opposite side of the BGA s
- Resistance:
- Highest in self-impedance cases . et araetes o
- Trends lower as probe landings separate [9] 50“"0“55300‘)5;5;000 SSHIE
7 50 e — e — —_— o et 2 e

[9] 3D Connection Artifacts in PDN Measurements (DesignCon 2023)
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PDN SPATIAL FILTERING SETUP Samles

- DUT2: Multi-load, high-computing application
- 32 DIMM sockets driven by 16 memory driver chips, split into 4 power planes,
each with 80A DCDC converter
283-layer stackup multiple 20z power layers
8x 1000uF, 27x 330uF by VR
40x 47uF near DIMM sockets
238x 4.7uF near memory controllers

- Measurement locations:

Core vias for top-bottom self-impedance probing

Top-side DIMM sites for “near” transfer-impedance probing

Top-side DIMM sites for “far” transfer-impedance probing

Bottom-side Memory Driver sites for “near” transfer impedance probing
Bottom-side Memory Driver sites for “far” transfer impedance probing

A S

16



|
I 0

SELF IMPEDANCE MEASURED AND SIMULATED ===t=

- Low frequency capacitive region correlates

- > 10kHz: expected deviation between measurement and correlation
due to hybrid PowerSl solver

Impedance magnitude [Ohm]
1.00E+01

1.00E+00
1.00E-01
1.00E-02

1.00E-03

1.00E-04
1E+2 1E+3 1E+4 1E+5 1E+6 1E+7 1E+8
Frequency [Hz]

e=———measured ==simulated
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SPATIAL FILTERING MEASUREMENTS AND

1
I 0

SIMULATIONS Sanilen

- Normalized transfer-impedance to self-impedance to estimate
filtering transfer function: @~(v_z) , (t_l) _ v

Z11 i (%1 (%1
- Cut-off frequency ~10kHz for both DIMMs and Memory Drivers

- < 10kHz: little deviation showing effective “lumped” region. Filtering here due to
DC resistance of planes

10 kHz — 1 MHz: RC filtering region due to plane’s DC and ‘skin’ resistances and
net capacitance on plane

- Transfer function slope ~10dB/dec, oc\/f, (skin resistance)
« SRF of 47uF and 4.7uF MLCCs visible

Impedance magnitude [Ohm] Normalized impedance magnitude [-]

1.00E+00 114 29 1.00E+01 114 9
Near Far
1.00E-01
1.00E+00
1.00E-02
1.00E-03 1.00E-01
1.00E-04
1.00E-02
1.00E-05
1.00E-06 1.00E-03

1E+2 1E+3 1E+4 1E+5 1E+6 1E+7 1E+8 1E+3 1E+4 1E+5 1E+6 1E+7
Frequency [Hz] Frequency [Hz]

e TPZ-5elf ~ emmm DIMM-transf e Chip-transf —
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CONCLUSIONS

- Good simulation/measurement correlation for two high-power DUTs

- Achieved 10uQ) noise floor with two port shunt-thru impedance setup with crosstalk calibration
(isolation)

Noise floor can be reduced to 1uQ with longer collection times
- Showed spatial filtering effects of the passive PDN and their physical roots
- Low frequency RC cutoff due to net capacitance and plane resistance in ~10kHz range

- SRF of PCB and package-level MLCCs appear in high frequency ranges of the self and transfer
impedances seen from the PCB

- Target impedance methodology can be adapted and optimized for individual applications as we
consider the different noise sources and filters in a complex system PDN

19
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FILTERING BETWEEN DIES IN MULTI-LOAD PDN

= Noise between dies attenuated due to low-pass o e
filtering g e
= Noise coupled between dies: S 10
= Content above package-die resonance highly
attenuated o+
= Content in package-dominated PDN frequency Frequency (Ha)
range less attenuated
= Content in frequency ranges where PDN is } =
PCB-dominated or VR-dominated sees little S o
attenuation 7

T T T T T
103 104 103 106 107 108 10?
Frequency (Hz)

21  Sanm|ec




NOISE FLOOR INVESTIGATION

Aimed to see how far noise floor could be reduced using
E5061B VNA

= SOLT calibration (including Isolation) to end of coax cables

= Some of the reference pieces
= SMA-SMA SHORT
= SMA-SMA SHORT-THRU
= 32u0hm
= ImOhm

= Setup variations

= No external active device
= 20dB low-noise preamplifier Port2
= 20dBm power booster Portl

= 20dBm power booster Portl. 20dB low-noise preamplifier
Port2




NOISE FLOOR INVESTIGATION

1Hz IFBW

0dBm source power

No averaging

SOLT calibration (including Isolation)
20dB 20dBm power booster on Portl
20dB low-noise pre-amplifier on Port2

Impedance magnitude [Ohm)]
1.00E-03

< 1pQ noise floor

1.00E-06

N AR

1E+2 1E+3 1E+4 1E+5 1E+6
Frequency [Hz]

1.00E-04

1.00E-05

==——=SHORT-SHORT-THRU ===1.4u0hm ===3.7u0hm 9.5u0hm ===16uOhm
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POWERDC® CONDUCTIVITY PER PIN PAIR

DUT1: POL, 250A Al application
= 30 layer stackup, 3layers power, half of layers GND
= BGA: 430 pwr pins, 1400 GND pins
= 500 decoupling caps, 5 different values
® <0.25nH net inductance seen by IC

» < 1mOhm impedance 10kHz - 3MHz (seen looking into pcb BGA) FOL converter

DC Test 1: DC Resistance seen by pins

= Top plot: Power domain pins see variable resistance path to POL

due to variation in geometric distance to POL ranging from
920uQ (blue) - 955uQ (green) - 990uQ (red)

= Bottom plot: GND BGA pins’ resistances vary similarly from
450uQ) (blue) - 515uQ (green) - 570uQ (red)

Down Here

POL converter
Down Here




SPATIAL FILTERING EFFECT

= Normalized transfer-impedance to self-impedance in order to estimate filtering transfer function:

Z21 (”_2) . (‘_1) _ V2
Z11 1 1Z1 121

= Cutoff frequency ~30kHz for both BGA regions

= <30kHz: little deviation showing effective “lumped” region. Filtering here due to DC resistance

of planes

= 30kHz — 800kHz: RC filtering region due to plane’s DC and ‘skin’ resistances and net
capacitance on plane

» Transfer function slope ~10dB/dec, « \/7 , (skin resistance)

Impedance magnitude [Ohm] Normalized impedance magnitude [-]
1.00E+00 1.00E+01
1.00E-01
1.00E+00
1.00E-02
1.00E-03 1.00E-01
1.00E-04
1.00E-02
1.00E-05
1.00E-06 1.00E-03
1E+2 1E+3 1E+4 1E+5 1E+6 1E+7 1E+8 1E+3 1E+4 1E+5 1E+6 1E+7 UV3435: N2 Region Self-Impedance
Frequency [Hz] Frequency [Hz] UAD3435: N2 Mid-Region Transfer Impedance
J3435: N2 Cross-Regi
Uvaazs UAD3435 UAI3A3S UAJ3435: N2 Cross-Region Transfer Impedance

= UV3435 = UAD3435 ====UAJ3435
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DUT2: AC SIMULATION AND MEASUREMENTS

= Site 2/3: DIMM sites’ transfer-impedances
= “Near” transfer-impedance remains > 0.2mQ
= “Far” transfer-impedance bottoms out around 0.1mQ
= Dips to 10s of uQ at SRF of MLCCs
= Correlation good given simulation used RLC models
= Measurement’s 8MHz dip believed to be due to Memory Drivers’ on-
package decoupling (not modeled in simulation)

Impedance magnitude [Ohm] Impedance magnitude [Ohm]
1.00E+01 1.00E+01
« ’ 1.00E+00 « 2

1.00E+00 Near Far
1.00E-01

1.00E-01 1.00E-02

1.00E-02 1.00E-03
1.00E-04

1.00E-03
1.00E-05

1.00E-04 1.00E-06

1E+2 1E+3 1E+4 1E+5 1E+6 1E+7 1E+8 1E+2 1E+3 1E+4 1E+5 1E+6 1E+7 1E+8
Frequency [Hz] Frequency [Hz]
———mmeasure d  ==——simulated e measure d  ==——simulated
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