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• Compare single point-of-load PDNs and PDNs feeding multiple parallel loads

•  Correlate bandwidth changes from the DC source pads to IC pads on the PCB

•  Present guidelines to avoid over-designing PDNs

•  Understand considerations for complex, multi-load power delivery designs

•  Update PDN target impedance methodology to be a function of frequency and spatial position

GOALS
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• PI design target for systems:

𝑍𝑍𝑃𝑃𝑃𝑃𝑃𝑃 ≤ Δ𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡/Δ𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚  for 0 ≤ 𝑓𝑓 ≤ 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚

• Different flavors of “target impedance” metric [1]
• Assumes minimum-phase, LTI system [2]
• Can meet target impedance but see voltage fluctuation generated outside of 

spec [3] [4][5][6]
• Not clearly extendable for multi-load or multi-power domain PDN
• Can be unrealistic target to meet over entire frequency range

TARGET IMPEDANCE

[1] Improved Methodology to Accurately Perform System Level Power Integrity Analysis Including an ASIC Die (DesignCon 2022)
[2] Frequency-Domain Power Distribution Measurements - An Overview (DesignCon 2003)
[3] Aperiodic Resonant Excitation of Microprocessor Power Distribution Systems and the Reverse Pulse Technique (IEEE 2002) 
[4] Target Impedance is not Enough (SIJ 2019)
[5] Target Impedance Limitations and Rogue Wave Assessments on PDN Performance (DesignCon 2015)
[6] Systematic Estimation of Worst-Case PDN Noise: Target Impedance and Rogue Waves (Quietpower 2015)
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• POL PDN and two-load PDN

• Transient current at die-level of PDN (Cadence SystemPI®) is filtered by die-package resonances and 
PCB impedance before appearing on the board or at neighboring die

POL AND MULTI-LOAD PDN LADDER MODELS
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SETUP

DUT1 DUT2
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• DUT1:  POL, 250A AI application
• 30-layer stackup, 3 power layers, half of layers GND
• BGA:  430 pwr pins, 1400 GND pins
• 500 decoupling caps, 5 different values
• <0.25nH net inductance seen by IC
• <1mOhm impedance 10kHz - 3MHz (seen looking into pcb BGA)

• DUT2:  Multi-load, high-computing application
• 32 DIMM sockets driven by 16 memory driver chips, split into 4 power planes, each with 

80A DCDC converter
• 28-layer stackup multiple 2oz power layers
• 8x 1000uF, 27x 330uF by VR
• 40x 47uF near DIMM sockets
• 238x 4.7uF near memory controllers

DEVICES UNDER TEST

 

 

 

VRM Decoupling ASICs
DUT1 Mounted, not powered Mounted Not mounted
DUT2 Mounted, not powered Mounted Mounted

D
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T1
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U
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Same Layer 
Decoupling

Backside 
Decoupling

POL converter 
Down Here
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• Keysight E5061B VNA, 2-port shunt thru measurement configuration

• PacketMicro RP-GR-121510 probes and positioner

• Microscope

• Common mode choke toroid for use up to 10MHz

• SOLT calibration (including Isolation) to end of cables.

• Landing probes not de-embedded
• +/-40pH - 50pH mutual probe-tip loop inductance @1MHz @1mm
• Negligible phase rotation from probes in this frequency range [7]

• 5Hz IFBW

• 10dBm source power

MEASUREMENT SETUP

[7] Impact of Finite Interconnect Impedance including Spatial and Domain Comparison of PDN Characterization 
(DesignCon 2024)

9



• 5Hz IFBW

• 10dBm source power

• No averaging

• SOLT calibration (including Isolation)

• No external active device

• DUT data shown in this paper used this setup

• <1µΩ noise floor achievable!

NOISE FLOOR INVESTIGATION
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• Conductivity per pin pair
• Top: Power domain pins see variable resistance path to POL due to variation in geometric distance 
• Bottom: Variation in GND BGA pin resistance

CADENCE POWERDC® 
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POL converter 
Down Here
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Investigations into spatial filtering:

• Equipotential Load vs. Equivalent Current 
Distribution

• All power pins draw equivalent amount of current
• Ideal forced equipotential on BGA power pins
• Uniform voltage supplied at BGA
• Current is purely function of path resistance
• 3x increase in max current per pin nearest POL

CADENCE POWERDC®
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Simulation Setup:

• Hybrid solver
• Wanted to see what quality correlation achievable with this faster simulator 

versus full 3D simulator used in [7].

• Capacitor modeling:
• S-parameter models used where available from vendors
• R-L-C models used where satisfactory vendor s-parameter models were not 

available

[7] Impact of Finite Interconnect Impedance including Spatial and Domain Comparison of PDN Characterization 
(DesignCon 2024)

CADENCE POWERSI®
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• Self-impedance – to – transfer impedance

• N2 region simulations and measurements as pin spacing between probe landings is 
increased [8]

• As probes separate:  Capacitance (no change), resistance (↓), inductance (↓)

[8] Determining the Requirements, Die vs. Package vs. Board: Multi-level PDN Design (DesignCon 2025) 

MEASUREMENT TO POWERSI SIMULATION CORRELATION

Same Layer 
Decoupling

Backside 
Decoupling

POL converter 
Down Here

Simulated Data:Measured Data:
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• Capacitance:  consistent between all datasets
• No variation expected or seen due to variation of observer

• Inductance:
• Highest in self-impedance cases
• Larger disagreement between simulated and measured data due to probe tip 

coupling
• Probe tip coupling falls off as probes separate
• Little difference between the different self-impedance cases, likely due to 

decoupling on the opposite side of the BGA

• Resistance:
• Highest in self-impedance cases
• Trends lower as probe landings separate [9]

[9] 3D Connection Artifacts in PDN Measurements (DesignCon 2023)

POWERSI SIMULATION CORRELATION

15



• DUT2:  Multi-load, high-computing application
• 32 DIMM sockets driven by 16 memory driver chips, split into 4 power planes, 

each with 80A DCDC converter
• 283-layer stackup multiple 2oz power layers
• 8x 1000uF, 27x 330uF by VR
• 40x 47uF near DIMM sockets
• 238x 4.7uF near memory controllers

• Measurement locations:
1. Core vias for top-bottom self-impedance probing
2. Top-side DIMM sites for “near” transfer-impedance probing
3. Top-side DIMM sites for “far” transfer-impedance probing
4. Bottom-side Memory Driver sites for “near” transfer impedance probing
5. Bottom-side Memory Driver sites for “far” transfer impedance probing

PDN SPATIAL FILTERING SETUP

Port1

Port2

Port1
Port1

Port2

Port1

Port2

Port2
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• Low frequency capacitive region correlates

• > 10kHz: expected deviation between measurement and correlation 
due to hybrid PowerSI solver

SELF IMPEDANCE MEASURED AND SIMULATED
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• Normalized transfer-impedance to self-impedance to estimate 
filtering transfer function: 

• Cut-off frequency ~10kHz for both DIMMs and Memory Drivers
• < 10kHz:  little deviation showing effective “lumped” region.  Filtering here due to 

DC resistance of planes
• 10 kHz – 1 MHz: RC filtering region due to plane’s DC and ‘skin’ resistances and 

net capacitance on plane
• Transfer function slope ~10dB/dec, ∝ 𝑓𝑓 , (skin resistance)
• SRF of 47μF and 4.7μF MLCCs visible

SPATIAL FILTERING MEASUREMENTS AND 
SIMULATIONS

Port1

Port2

Port1
Port1

Port2

Port1

Port2

Port2

“Near” “Far”
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• Good simulation/measurement correlation for two high-power DUTs 

• Achieved 10µΩ noise floor with two port shunt-thru impedance setup with crosstalk calibration 
(isolation)

 Noise floor can be reduced to 1µΩ with longer collection times

• Showed spatial filtering effects of the passive PDN and their physical roots

• Low frequency RC cutoff due to net capacitance and plane resistance in ~10kHz range

• SRF of PCB and package-level MLCCs appear in high frequency ranges of the self and transfer 
impedances seen from the PCB

• Target impedance methodology can be adapted and optimized for individual applications as we 
consider the different noise sources and filters in a complex system PDN

CONCLUSIONS
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FILTERING BETWEEN DIES IN MULTI-LOAD PDN
 Noise between dies attenuated due to low-pass 

filtering
 Noise coupled between dies: 
 Content above package-die resonance highly 

attenuated
 Content in package-dominated PDN frequency 

range less attenuated
 Content in frequency ranges where PDN is 

PCB-dominated or VR-dominated sees little 
attenuation
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NOISE FLOOR INVESTIGATION
 Aimed to see how far noise floor could be reduced using 

E5061B VNA
 SOLT calibration (including Isolation) to end of coax cables
 Some of the reference pieces

 SMA-SMA SHORT
 SMA-SMA SHORT-THRU 
 32uOhm
 1mOhm

 Setup variations
 No external active device
 20dB low-noise preamplifier Port2
 20dBm power booster Port1
 20dBm power booster Port1. 20dB low-noise preamplifier 

Port2
22



NOISE FLOOR INVESTIGATION
 1Hz IFBW
 0dBm source power
 No averaging
 SOLT calibration (including Isolation)
 20dB 20dBm power booster on Port1
 20dB low-noise pre-amplifier on Port2
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POWERDC® CONDUCTIVITY PER PIN PAIR
 DUT1:  POL, 250A AI application

 30 layer stackup, 3layers power, half of layers GND
 BGA:  430 pwr pins, 1400 GND pins
 500 decoupling caps, 5 different values
 < 0.25nH net inductance seen by IC
 < 1mOhm impedance 10kHz - 3MHz (seen looking into pcb BGA)

 DC Test 1:  DC Resistance seen by pins
 Top plot:  Power domain pins see variable resistance path to POL 

due to variation in geometric distance to POL ranging from 
920µΩ (blue) - 955µΩ (green) - 990µΩ (red)

 Bottom plot:  GND BGA pins’ resistances vary similarly from 
450µΩ (blue) - 515µΩ (green) - 570µΩ (red)

POL converter 
Down Here

POL converter 
Down Here

990µΩ

955µΩ

920µΩ

570µΩ

515µΩ

450µΩ
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SPATIAL FILTERING EFFECT
 Normalized transfer-impedance to self-impedance in order to estimate filtering transfer function:  

   𝑍𝑍21
𝑍𝑍11

~ 𝑣𝑣2
𝑖𝑖1

⋅ 𝑖𝑖1
𝑣𝑣1

= 𝑣𝑣2
𝑣𝑣1

 Cutoff frequency ~30kHz for both BGA regions
 <30kHz:  little deviation showing effective “lumped” region.  Filtering here due to DC resistance 

of planes
 30kHz – 800kHz: RC filtering region due to plane’s DC and ‘skin’ resistances and net 

capacitance on plane
 Transfer function slope ~10dB/dec, ∝ 𝑓𝑓 , (skin resistance)
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UV3435:  N2 Region Self-Impedance
UAD3435:  N2 Mid-Region Transfer Impedance
UAJ3435:  N2 Cross-Region Transfer Impedance
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DUT2: AC SIMULATION AND MEASUREMENTS
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 Site 2/3:  DIMM sites’ transfer-impedances
 “Near” transfer-impedance remains > 0.2mΩ
 “Far” transfer-impedance bottoms out around 0.1mΩ

 Dips to 10s of µΩ at SRF of MLCCs
 Correlation good given simulation used RLC models
 Measurement’s 8MHz dip believed to be due to Memory Drivers’ on-

package decoupling (not modeled in simulation)

“Near” “Far”

Port2

Port1
Port1

Port2
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