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We know that in the signal integrity world reflections are usually bad.  In clock networks 
reflection glitches may cause multiple and false clock triggering, in medium-speed digital 
signaling reflections will reduce noise margin and in high-speed SerDes signaling 
reflections increase jitter and create vertical eye closure.   
 
Reflections happen along an interconnect at any point where the impedance environment 
around the electromagnetic wave changes.  Figure 1 illustrates this with a simple example 
using a uniform stretch of transmission line with Z01 characteristic impedance between Z0 
reference impedance connections.    
 

 
 

Figure 1: Definition of voltage reflection coefficient. 
 
 
The formulas shown in the figure for the Γ voltage reflection coefficient are generic and 
they express the complex ratio of reflected and incident waves.  We can apply the formula 
to steady-state impedances, something we could measure with a Vector Network 
Analyzer, or to transient impedances, which would be the case when we use Time Domain 
Reflectometry.  In general, the impedances that go into the formula, and as a result, the 
voltage reflection coefficient itself as well, are complex numbers with magnitude and 
phase, or real and imaginary parts.  Another generic characteristic is that the direction of 
the arrow at the end of the red line has a significance: in the nominator of the voltage 
reflection formula the first term is the impedance the wave will enter into by crossing the 
boundary and the second term is the impedance the wave is coming from.  This means that 
if we calculate the voltage reflection coefficient at the same boundary, but going the 
opposite direction, the sign of the voltage reflection coefficient will change while the 
magnitude stays the same. 
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As a simple example, lets assume that we have a lossless transmission line with a Z01 = 45 
Ohm characteristic impedance and we look at it between Z0 = 50 Ohm reference 
impedances.  This represents the lower bound of a +-10% impedance tolerance for a 50-
Ohm trace.  With all impedances being real numbers in this simple example, the voltage 
reflection coefficient is also real, with a value of Γ1 = -1/19 and Γ2 = 1/19, or 
approximately +/-5%.  Based on the 5% reflection magnitude we may expect that 95% of 
the launched signal will continue after the reflection.  To test this assumption, we can do a 
very simple simulation.  Figure 2 shows the circuit drawn in LTSPICE: a lossless 45-Ohm 
Tline section between a 50-Ohm source and load 50-Ohm termination.  The resulting 
frequency response is shown in Figure 3. 

 

 
 

Figure 2: LTSPICE simulation circuit with impedance mismatch. 
 
 

 
 

Figure 3: Frequency response of circuit in Figure 2.  Voltage magnitudes are solid lines 
referencing the left vertical axis, phase is dotted line, referencing the right vertical axis. 

 
 
With 2V source voltage, if we had all matched conditions, Z0= Z01 = Z02 = 50 ohm, we 
would expect and in fact we would get 1V across the load regardless of frequency.  That is 
actually the signal level we get at very low frequencies in our example, too.  As frequency 
goes up, we notice that both the input voltage (the voltage across the input of the 
transmission line, after the source resistance) and the output voltage start to drop, but at a 
different rate.  At 50 MHz both curves reach their minimum values: Vin voltage drops 
approximately 10%, but the Vout output voltage drops only 5.5 mV, much less than the 
5% what we would expect from lumped-circuit assumptions.  The variation continues 



periodically with frequency: the traces reach a 1V maximum at 100 MHz and then the 
behavior repeats.  With 5 ns delay through the transmission line, the first minimum at 50 
MHz corresponds to the quarter-wave condition, at the maximum points of 100 MHz and 
its multiples we have the half-wavelength (and its multiples) condition.   
 
Note the logarithmic frequency scale; it visually distorts the plots, making the linear phase 
lines looked curved, but at the same time it allows us to observe a several-decade wide 
frequency range with good resolution throughout the entire range.  With linear frequency 
scale the phase curve would be a straight line sloping downwards following the simple 
formula: 
 

𝜑𝜑 = 𝜔𝜔 𝑡𝑡𝑝𝑝𝑝𝑝 
 
where ϕ is the phase angle in radians, ω is the radian frequency and tpd is the propagation 
delay through the transmission line.  Note also the delay readout in the cursor field: 4.97 
ns at 50 MHz and 5.03 ns at 100 MHz.  These numbers are close to the 5 ns delay we 
assigned to the transmission line, but we still may wonder: is this difference coming from 
numerical calculation errors or does this represent the real behavior of the circuit?  As it 
was explained and illustrated in more detail in [1], what we see here is the manifestation 
of the fact that reflections can change the steady-state delay in a frequency-dependent 
manner. 
 
Before we get back to why the output voltage drops only so surprisingly little, lets look at 
a different example.  Instead of a direct impedance mismatch, we now use a Z0 = 50 ohm 
transmission line and we use a series 5-ohm resistor, which may crudely represent its 
conductive losses.  As opposed to regular printed circuit board traces, where the 
conductive losses are frequency dependent, the practical equivalent of this case could be 
for instance a thin-film transmission line.  The schematics is shown in Figure 4, the 
frequency response is shown in Figure 5. 
 

 
 

Figure 4: LTSPICE simulation circuit with series loss resistance represented by a 5-ohm 
series resistor. 

 
 
In this case the result matches our simplistic expectation: regardless of frequency, we get 
an approximately 5% drop in the output voltage.   
 



 
 

 
 

Figure 5: Frequency response of circuit in Figure 4.  Voltage magnitudes are solid lines 
referencing the left vertical axis, phase is dotted line, referencing the right vertical axis. 

 
 
To understand the reason for the two seemingly very different behaviors, we reach back to 
a fundamental principle, the conservation of energy.  If we have a lossless (linear and time 
invariant) circuit that does not lose power due to losses, radiation or in any other way, we 
know that if we send a unity amount of power towards the circuit, the sum of the reflected 
and transmitted powers must equal unity.  Expressed by the elements of the S matrix of 
the network, practically this means that the sum of the squares of the S-matrix elements in 
each row or column must add up to one.  For instance, in case of a two-port lossless 
network and assuming that we launch the signal towards Port 1, this means  
 

(𝑆𝑆11)2 + (𝑆𝑆21)2 = 1 
 
This expression tells us that if we have |Γ| = |S11| = 0.1 or 10% reflection from a lossless 
circuit, the magnitude of the transmitted wave will be sqrt(1-0.01) ~ 0.995, and this 
matches what we get from the simulated response.   
 
Our second example is fundamentally different.  The simple fact that we included a series 
resistor in the circuit, made the circuit lossy.  Though the conservation of energy principle 
still applies, now in the power sum we would also need to include the power lost by 
dissipation across the series resistor.  We could follow this approach to calculate the signal 
magnitude at the output, but we can also use some other simple tricks to get an answer.  In 
Figure 4, looking into the T1 transmission line on the left, its input impedance is 50 ohms, 
regardless of the frequency, because we deal the input impedance of a matched-terminated 
lossless transmission line.   Based on this realization we can draw a simplified equivalent 
circuit, as shown in Figure 6.  Looking into the circuit from the left, we see the sum of Rs 
and Z02, or 55 ohms.  From the 2V source voltage together with the 50-ohm source 
impedance this input impedance creates a 2*55/(55 + 50) = 1.0476 ~ 1.05 V signal, just as 
we see in Figure 4.  From this input signal the 50/(55 + 50) voltage attenuator produces 
approximately 0.95 V, just as we see in Figure 4. 



 

 
 

Figure 6: Simplified equivalent circuit of the network shown in Figure 4. 
 
 
These above two examples represent the bounding limits we have to deal with in practice 
when we have lossy or lossless passive networks.  These two extreme conditions can 
simply be plotted in spreadsheets in a normalized fashion.  Figure 7 can be applied to 
cases similar to Figure 2.  The fact that the circuit does not dissipate power is represented 
here by a (lossless) reactance in series to the lossless transmission line.  The plot on the 
left uses on the horizontal logarithmic scale the absolute value of the series reactive 
impedance; the plot on the right uses the same data with the reactive impedance 
normalized to the reference impedance.  The plots show two lines: Return Loss (the dB 
value of the S11 input reflection coefficient) on the left axis and the Insertion Loss (the dB 
value of the S21 transmission coefficient) on the right axis. 

 

 
 

Figure 7: Calculated Return Loss (RL) and Insertion loss (IL) of circuits similar to shown in 
Figure 2. 

 
 
Finally Figure 8 shows similar plots when we use lossy circuits.  We model it with a 
lossless transmission line and a series resistor.  To allow easy comparison, the 
organization of the two plots is exactly the same that we had in Figure 7.  The lines look 
very similar in the two figures, but we have to notice that the insertion loss lines in Figure 
7 are much steeper.  This tells us numerically that when we deal with lossless, purely 
reactive circuits, or in other words when we have only reactive reflection loss, the loss of 
signal magnitude diminishes very sharply as we reduce the reflection magnitude and even 

1.E-09
1.E-08
1.E-07
1.E-06
1.E-05
1.E-04
1.E-03
1.E-02
1.E-01
1.E+00
1.E+01

-100
-90
-80
-70
-60
-50
-40
-30
-20
-10

0

1.E-3 1.E-2 1.E-1 1.E+0 1.E+1 1.E+2
XL [Ohm]

RL and IL of a series reactance [dB]

RL [dB] - IL [dB]

1.E-09

1.E-07

1.E-05

1.E-03

1.E-01

1.E+01

-100
-90
-80
-70
-60
-50
-40
-30
-20
-10

0

1.E-5 1.E-4 1.E-3 1.E-2 1.E-1 1.E+0 1.E+1
XL/Zo [-]

RL and IL of a series reactance [dB]

RL [dB] - IL [dB]



moderate or medium reflections will result in relatively small loss of signal strength at the 
output.   
 

 
 
Figure 8: Calculated Return Loss (RL) and Insertion loss (IL) of circuits similar to shown 

in Figure 4. 
 
 
In contrast, when we have dissipative losses, the signal strength on the output will be 
much less and even relatively small losses will result in noticeable loss of signal 
magnitude at the output. 
 
As a final note, we need to keep in mind that while single reactive discontinuities (for 
instance connector launches, vias, antipads) will result in miniscule signal loss, when we 
have a periodic structure with evenly spaced multiple discontinuities, even small reflection 
will result in significant signal loss at frequencies where the small reflections all add up 
(see for instance [2] and [3]).  On the flip side, though dissipative losses result in higher 
up-front signal loss, this loss of signal strength will be much less sensitive to the 
parameter variations of cascaded multiple segments. 
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